Enter a problem...
Algebra Examples
Step 1
Step 1.1
Move all terms not containing to the right side of the equation.
Step 1.1.1
Subtract from both sides of the equation.
Step 1.1.2
Add to both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Rewrite the expression.
Step 1.2.2.2
Cancel the common factor of .
Step 1.2.2.2.1
Cancel the common factor.
Step 1.2.2.2.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Cancel the common factor of and .
Step 1.2.3.1.1.1
Factor out of .
Step 1.2.3.1.1.2
Cancel the common factors.
Step 1.2.3.1.1.2.1
Factor out of .
Step 1.2.3.1.1.2.2
Cancel the common factor.
Step 1.2.3.1.1.2.3
Rewrite the expression.
Step 1.2.3.1.2
Cancel the common factor of .
Step 1.2.3.1.2.1
Cancel the common factor.
Step 1.2.3.1.2.2
Rewrite the expression.
Step 1.2.3.1.3
Cancel the common factor of and .
Step 1.2.3.1.3.1
Factor out of .
Step 1.2.3.1.3.2
Cancel the common factors.
Step 1.2.3.1.3.2.1
Factor out of .
Step 1.2.3.1.3.2.2
Cancel the common factor.
Step 1.2.3.1.3.2.3
Rewrite the expression.
Step 1.2.3.1.4
Move the negative in front of the fraction.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Cancel the common factor of .
Step 2.2.1.1.2.1
Factor out of .
Step 2.2.1.1.2.2
Cancel the common factor.
Step 2.2.1.1.2.3
Rewrite the expression.
Step 2.2.1.1.3
Multiply by .
Step 2.2.1.1.4
Cancel the common factor of .
Step 2.2.1.1.4.1
Move the leading negative in into the numerator.
Step 2.2.1.1.4.2
Factor out of .
Step 2.2.1.1.4.3
Factor out of .
Step 2.2.1.1.4.4
Cancel the common factor.
Step 2.2.1.1.4.5
Rewrite the expression.
Step 2.2.1.1.5
Combine and .
Step 2.2.1.1.6
Multiply by .
Step 2.2.1.1.7
Move the negative in front of the fraction.
Step 2.2.1.1.8
Apply the distributive property.
Step 2.2.1.1.9
Cancel the common factor of .
Step 2.2.1.1.9.1
Factor out of .
Step 2.2.1.1.9.2
Cancel the common factor.
Step 2.2.1.1.9.3
Rewrite the expression.
Step 2.2.1.1.10
Multiply by .
Step 2.2.1.1.11
Cancel the common factor of .
Step 2.2.1.1.11.1
Move the leading negative in into the numerator.
Step 2.2.1.1.11.2
Factor out of .
Step 2.2.1.1.11.3
Factor out of .
Step 2.2.1.1.11.4
Cancel the common factor.
Step 2.2.1.1.11.5
Rewrite the expression.
Step 2.2.1.1.12
Combine and .
Step 2.2.1.1.13
Multiply by .
Step 2.2.1.1.14
Apply the distributive property.
Step 2.2.1.1.15
Multiply .
Step 2.2.1.1.15.1
Combine and .
Step 2.2.1.1.15.2
Raise to the power of .
Step 2.2.1.1.15.3
Raise to the power of .
Step 2.2.1.1.15.4
Use the power rule to combine exponents.
Step 2.2.1.1.15.5
Add and .
Step 2.2.1.1.16
Rewrite as .
Step 2.2.1.1.17
Expand using the FOIL Method.
Step 2.2.1.1.17.1
Apply the distributive property.
Step 2.2.1.1.17.2
Apply the distributive property.
Step 2.2.1.1.17.3
Apply the distributive property.
Step 2.2.1.1.18
Simplify and combine like terms.
Step 2.2.1.1.18.1
Simplify each term.
Step 2.2.1.1.18.1.1
Multiply .
Step 2.2.1.1.18.1.1.1
Multiply by .
Step 2.2.1.1.18.1.1.2
Multiply by .
Step 2.2.1.1.18.1.1.3
Multiply by .
Step 2.2.1.1.18.1.2
Multiply .
Step 2.2.1.1.18.1.2.1
Multiply by .
Step 2.2.1.1.18.1.2.2
Multiply by .
Step 2.2.1.1.18.1.2.3
Multiply by .
Step 2.2.1.1.18.1.3
Multiply .
Step 2.2.1.1.18.1.3.1
Multiply by .
Step 2.2.1.1.18.1.3.2
Multiply by .
Step 2.2.1.1.18.1.3.3
Multiply by .
Step 2.2.1.1.18.1.4
Multiply .
Step 2.2.1.1.18.1.4.1
Multiply by .
Step 2.2.1.1.18.1.4.2
Multiply by .
Step 2.2.1.1.18.1.4.3
Multiply by .
Step 2.2.1.1.18.1.4.4
Multiply by .
Step 2.2.1.1.18.1.4.5
Raise to the power of .
Step 2.2.1.1.18.1.4.6
Raise to the power of .
Step 2.2.1.1.18.1.4.7
Use the power rule to combine exponents.
Step 2.2.1.1.18.1.4.8
Add and .
Step 2.2.1.1.18.1.4.9
Multiply by .
Step 2.2.1.1.18.2
Subtract from .
Step 2.2.1.1.19
Simplify each term.
Step 2.2.1.1.19.1
Cancel the common factor of .
Step 2.2.1.1.19.1.1
Factor out of .
Step 2.2.1.1.19.1.2
Factor out of .
Step 2.2.1.1.19.1.3
Cancel the common factor.
Step 2.2.1.1.19.1.4
Rewrite the expression.
Step 2.2.1.1.19.2
Rewrite as .
Step 2.2.1.1.20
Apply the distributive property.
Step 2.2.1.1.21
Simplify.
Step 2.2.1.1.21.1
Cancel the common factor of .
Step 2.2.1.1.21.1.1
Factor out of .
Step 2.2.1.1.21.1.2
Cancel the common factor.
Step 2.2.1.1.21.1.3
Rewrite the expression.
Step 2.2.1.1.21.2
Multiply by .
Step 2.2.1.1.21.3
Cancel the common factor of .
Step 2.2.1.1.21.3.1
Move the leading negative in into the numerator.
Step 2.2.1.1.21.3.2
Factor out of .
Step 2.2.1.1.21.3.3
Factor out of .
Step 2.2.1.1.21.3.4
Cancel the common factor.
Step 2.2.1.1.21.3.5
Rewrite the expression.
Step 2.2.1.1.21.4
Cancel the common factor of .
Step 2.2.1.1.21.4.1
Factor out of .
Step 2.2.1.1.21.4.2
Factor out of .
Step 2.2.1.1.21.4.3
Cancel the common factor.
Step 2.2.1.1.21.4.4
Rewrite the expression.
Step 2.2.1.1.22
Simplify each term.
Step 2.2.1.1.22.1
Move the negative in front of the fraction.
Step 2.2.1.1.22.2
Multiply .
Step 2.2.1.1.22.2.1
Multiply by .
Step 2.2.1.1.22.2.2
Multiply by .
Step 2.2.1.1.22.3
Rewrite as .
Step 2.2.1.2
Simplify by adding terms.
Step 2.2.1.2.1
Combine the opposite terms in .
Step 2.2.1.2.1.1
Add and .
Step 2.2.1.2.1.2
Add and .
Step 2.2.1.2.2
Subtract from .
Step 2.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.2.1.4.1
Multiply by .
Step 2.2.1.4.2
Multiply by .
Step 2.2.1.5
Combine the numerators over the common denominator.
Step 2.2.1.6
Find the common denominator.
Step 2.2.1.6.1
Write as a fraction with denominator .
Step 2.2.1.6.2
Multiply by .
Step 2.2.1.6.3
Multiply by .
Step 2.2.1.6.4
Write as a fraction with denominator .
Step 2.2.1.6.5
Multiply by .
Step 2.2.1.6.6
Multiply by .
Step 2.2.1.7
Simplify terms.
Step 2.2.1.7.1
Combine the numerators over the common denominator.
Step 2.2.1.7.2
Simplify each term.
Step 2.2.1.7.2.1
Multiply by .
Step 2.2.1.7.2.2
Multiply by .
Step 2.2.1.7.2.3
Multiply by .
Step 2.2.1.7.3
Subtract from .
Step 2.2.1.8
Simplify the numerator.
Step 2.2.1.8.1
Factor out of .
Step 2.2.1.8.1.1
Factor out of .
Step 2.2.1.8.1.2
Factor out of .
Step 2.2.1.8.1.3
Factor out of .
Step 2.2.1.8.1.4
Factor out of .
Step 2.2.1.8.1.5
Factor out of .
Step 2.2.1.8.2
Let . Substitute for all occurrences of .
Step 2.2.1.8.3
Factor by grouping.
Step 2.2.1.8.3.1
Reorder terms.
Step 2.2.1.8.3.2
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 2.2.1.8.3.2.1
Factor out of .
Step 2.2.1.8.3.2.2
Rewrite as plus
Step 2.2.1.8.3.2.3
Apply the distributive property.
Step 2.2.1.8.3.3
Factor out the greatest common factor from each group.
Step 2.2.1.8.3.3.1
Group the first two terms and the last two terms.
Step 2.2.1.8.3.3.2
Factor out the greatest common factor (GCF) from each group.
Step 2.2.1.8.3.4
Factor the polynomial by factoring out the greatest common factor, .
Step 2.2.1.8.4
Replace all occurrences of with .
Step 3
Step 3.1
Set the numerator equal to zero.
Step 3.2
Solve the equation for .
Step 3.2.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.2.2
Set equal to and solve for .
Step 3.2.2.1
Set equal to .
Step 3.2.2.2
Solve for .
Step 3.2.2.2.1
Add to both sides of the equation.
Step 3.2.2.2.2
Divide each term in by and simplify.
Step 3.2.2.2.2.1
Divide each term in by .
Step 3.2.2.2.2.2
Simplify the left side.
Step 3.2.2.2.2.2.1
Cancel the common factor of .
Step 3.2.2.2.2.2.1.1
Cancel the common factor.
Step 3.2.2.2.2.2.1.2
Divide by .
Step 3.2.3
Set equal to and solve for .
Step 3.2.3.1
Set equal to .
Step 3.2.3.2
Add to both sides of the equation.
Step 3.2.4
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Combine and .
Step 4.2.1.1.2
Multiply by .
Step 4.2.1.1.3
Divide by .
Step 4.2.1.1.4
Cancel the common factor of and .
Step 4.2.1.1.4.1
Factor out of .
Step 4.2.1.1.4.2
Cancel the common factors.
Step 4.2.1.1.4.2.1
Factor out of .
Step 4.2.1.1.4.2.2
Cancel the common factor.
Step 4.2.1.1.4.2.3
Rewrite the expression.
Step 4.2.1.2
Combine fractions.
Step 4.2.1.2.1
Combine the numerators over the common denominator.
Step 4.2.1.2.2
Simplify the expression.
Step 4.2.1.2.2.1
Subtract from .
Step 4.2.1.2.2.2
Divide by .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Cancel the common factor of and .
Step 5.2.1.1.1
Factor out of .
Step 5.2.1.1.2
Cancel the common factors.
Step 5.2.1.1.2.1
Factor out of .
Step 5.2.1.1.2.2
Cancel the common factor.
Step 5.2.1.1.2.3
Rewrite the expression.
Step 5.2.1.2
Combine the numerators over the common denominator.
Step 5.2.1.3
Simplify the expression.
Step 5.2.1.3.1
Subtract from .
Step 5.2.1.3.2
Divide by .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8