Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Multiply both sides by .
Step 2.3
Simplify.
Step 2.3.1
Simplify the left side.
Step 2.3.1.1
Cancel the common factor of .
Step 2.3.1.1.1
Cancel the common factor.
Step 2.3.1.1.2
Rewrite the expression.
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Simplify .
Step 2.3.2.1.1
Apply the distributive property.
Step 2.3.2.1.2
Multiply by .
Step 2.4
Solve for .
Step 2.4.1
Solve for .
Step 2.4.1.1
Subtract from both sides of the equation.
Step 2.4.1.2
Subtract from both sides of the equation.
Step 2.4.1.3
Factor out of .
Step 2.4.1.3.1
Factor out of .
Step 2.4.1.3.2
Factor out of .
Step 2.4.1.3.3
Factor out of .
Step 2.4.1.4
Divide each term in by and simplify.
Step 2.4.1.4.1
Divide each term in by .
Step 2.4.1.4.2
Simplify the left side.
Step 2.4.1.4.2.1
Cancel the common factor of .
Step 2.4.1.4.2.1.1
Cancel the common factor.
Step 2.4.1.4.2.1.2
Divide by .
Step 2.4.1.4.3
Simplify the right side.
Step 2.4.1.4.3.1
Combine the numerators over the common denominator.
Step 2.4.1.4.3.2
Rewrite as .
Step 2.4.1.4.3.3
Factor out of .
Step 2.4.1.4.3.4
Factor out of .
Step 2.4.1.4.3.5
Move the negative in front of the fraction.
Step 2.4.2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 2.4.3
Simplify each side of the equation.
Step 2.4.3.1
Use to rewrite as .
Step 2.4.3.2
Simplify the left side.
Step 2.4.3.2.1
Simplify .
Step 2.4.3.2.1.1
Multiply the exponents in .
Step 2.4.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.4.3.2.1.1.2
Cancel the common factor of .
Step 2.4.3.2.1.1.2.1
Cancel the common factor.
Step 2.4.3.2.1.1.2.2
Rewrite the expression.
Step 2.4.3.2.1.2
Simplify.
Step 2.4.3.3
Simplify the right side.
Step 2.4.3.3.1
Simplify .
Step 2.4.3.3.1.1
Use the power rule to distribute the exponent.
Step 2.4.3.3.1.1.1
Apply the product rule to .
Step 2.4.3.3.1.1.2
Apply the product rule to .
Step 2.4.3.3.1.2
Raise to the power of .
Step 2.4.3.3.1.3
Multiply by .
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Remove parentheses.
Step 4.2.4
Simplify the numerator.
Step 4.2.4.1
To write as a fraction with a common denominator, multiply by .
Step 4.2.4.2
Combine and .
Step 4.2.4.3
Combine the numerators over the common denominator.
Step 4.2.4.4
Rewrite in a factored form.
Step 4.2.4.4.1
Use to rewrite as .
Step 4.2.4.4.2
Use to rewrite as .
Step 4.2.4.4.3
Let . Substitute for all occurrences of .
Step 4.2.4.4.4
Replace all occurrences of with .
Step 4.2.4.5
Apply the product rule to .
Step 4.2.4.6
Simplify the numerator.
Step 4.2.4.6.1
Apply the product rule to .
Step 4.2.4.6.2
Raise to the power of .
Step 4.2.4.6.3
Multiply the exponents in .
Step 4.2.4.6.3.1
Apply the power rule and multiply exponents, .
Step 4.2.4.6.3.2
Cancel the common factor of .
Step 4.2.4.6.3.2.1
Cancel the common factor.
Step 4.2.4.6.3.2.2
Rewrite the expression.
Step 4.2.4.6.4
Simplify.
Step 4.2.4.7
Rewrite as .
Step 4.2.4.8
Expand using the FOIL Method.
Step 4.2.4.8.1
Apply the distributive property.
Step 4.2.4.8.2
Apply the distributive property.
Step 4.2.4.8.3
Apply the distributive property.
Step 4.2.4.9
Simplify and combine like terms.
Step 4.2.4.9.1
Simplify each term.
Step 4.2.4.9.1.1
Multiply by .
Step 4.2.4.9.1.2
Multiply by .
Step 4.2.4.9.1.3
Multiply by .
Step 4.2.4.9.1.4
Multiply .
Step 4.2.4.9.1.4.1
Raise to the power of .
Step 4.2.4.9.1.4.2
Raise to the power of .
Step 4.2.4.9.1.4.3
Use the power rule to combine exponents.
Step 4.2.4.9.1.4.4
Add and .
Step 4.2.4.9.1.5
Rewrite as .
Step 4.2.4.9.1.5.1
Use to rewrite as .
Step 4.2.4.9.1.5.2
Apply the power rule and multiply exponents, .
Step 4.2.4.9.1.5.3
Combine and .
Step 4.2.4.9.1.5.4
Cancel the common factor of .
Step 4.2.4.9.1.5.4.1
Cancel the common factor.
Step 4.2.4.9.1.5.4.2
Rewrite the expression.
Step 4.2.4.9.1.5.5
Simplify.
Step 4.2.4.9.2
Add and .
Step 4.2.5
Simplify the denominator.
Step 4.2.5.1
Write as a fraction with a common denominator.
Step 4.2.5.2
Combine the numerators over the common denominator.
Step 4.2.5.3
Rewrite in a factored form.
Step 4.2.5.3.1
Add and .
Step 4.2.5.3.2
Subtract from .
Step 4.2.5.3.3
Add and .
Step 4.2.5.4
Apply the product rule to .
Step 4.2.5.5
Raise to the power of .
Step 4.2.5.6
Rewrite as .
Step 4.2.5.7
Expand using the FOIL Method.
Step 4.2.5.7.1
Apply the distributive property.
Step 4.2.5.7.2
Apply the distributive property.
Step 4.2.5.7.3
Apply the distributive property.
Step 4.2.5.8
Simplify and combine like terms.
Step 4.2.5.8.1
Simplify each term.
Step 4.2.5.8.1.1
Multiply by .
Step 4.2.5.8.1.2
Multiply by .
Step 4.2.5.8.1.3
Multiply by .
Step 4.2.5.8.1.4
Multiply .
Step 4.2.5.8.1.4.1
Raise to the power of .
Step 4.2.5.8.1.4.2
Raise to the power of .
Step 4.2.5.8.1.4.3
Use the power rule to combine exponents.
Step 4.2.5.8.1.4.4
Add and .
Step 4.2.5.8.1.5
Rewrite as .
Step 4.2.5.8.1.5.1
Use to rewrite as .
Step 4.2.5.8.1.5.2
Apply the power rule and multiply exponents, .
Step 4.2.5.8.1.5.3
Combine and .
Step 4.2.5.8.1.5.4
Cancel the common factor of .
Step 4.2.5.8.1.5.4.1
Cancel the common factor.
Step 4.2.5.8.1.5.4.2
Rewrite the expression.
Step 4.2.5.8.1.5.5
Simplify.
Step 4.2.5.8.2
Add and .
Step 4.2.6
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.7
Cancel the common factor of .
Step 4.2.7.1
Factor out of .
Step 4.2.7.2
Cancel the common factor.
Step 4.2.7.3
Rewrite the expression.
Step 4.2.8
Cancel the common factor of .
Step 4.2.8.1
Cancel the common factor.
Step 4.2.8.2
Rewrite the expression.
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Simplify the numerator.
Step 4.3.3.1
Rewrite as .
Step 4.3.3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 4.3.3.3
Write as a fraction with a common denominator.
Step 4.3.3.4
Combine the numerators over the common denominator.
Step 4.3.3.5
Reorder terms.
Step 4.3.3.6
Rewrite in a factored form.
Step 4.3.3.6.1
Apply the distributive property.
Step 4.3.3.6.2
Multiply by .
Step 4.3.3.6.3
Subtract from .
Step 4.3.3.6.4
Add and .
Step 4.3.3.6.5
Add and .
Step 4.3.4
Simplify the denominator.
Step 4.3.4.1
Rewrite as .
Step 4.3.4.2
Pull terms out from under the radical, assuming positive real numbers.
Step 4.3.4.3
Write as a fraction with a common denominator.
Step 4.3.4.4
Combine the numerators over the common denominator.
Step 4.3.4.5
Reorder terms.
Step 4.3.4.6
Rewrite in a factored form.
Step 4.3.4.6.1
Add and .
Step 4.3.4.6.2
Subtract from .
Step 4.3.4.6.3
Add and .
Step 4.3.5
Multiply the numerator by the reciprocal of the denominator.
Step 4.3.6
Cancel the common factor of .
Step 4.3.6.1
Factor out of .
Step 4.3.6.2
Cancel the common factor.
Step 4.3.6.3
Rewrite the expression.
Step 4.3.7
Cancel the common factor of .
Step 4.3.7.1
Cancel the common factor.
Step 4.3.7.2
Rewrite the expression.
Step 4.4
Since and , then is the inverse of .