Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Multiply .
Step 2.2.1.1.2.1
Multiply by .
Step 2.2.1.1.2.2
Combine and .
Step 2.2.1.1.3
Multiply .
Step 2.2.1.1.3.1
Multiply by .
Step 2.2.1.1.3.2
Multiply by .
Step 2.2.1.1.3.3
Combine and .
Step 2.2.1.1.4
Move the negative in front of the fraction.
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Combine and .
Step 2.2.1.4
Combine the numerators over the common denominator.
Step 2.2.1.5
Simplify the numerator.
Step 2.2.1.5.1
Multiply by .
Step 2.2.1.5.2
Subtract from .
Step 2.2.1.6
Move the negative in front of the fraction.
Step 3
Step 3.1
Move all terms containing to the left side of the equation.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.1.3
Combine and .
Step 3.1.4
Combine the numerators over the common denominator.
Step 3.1.5
Simplify the numerator.
Step 3.1.5.1
Move to the left of .
Step 3.1.5.2
Subtract from .
Step 3.2
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
Step 3.3
Divide each term in by and simplify.
Step 3.3.1
Divide each term in by .
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of .
Step 3.3.2.1.1
Cancel the common factor.
Step 3.3.2.1.2
Divide by .
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Divide by .
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Multiply by .
Step 4.2.1.2
Add and .
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 6
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 7