Algebra Examples

Divide Using Long Polynomial Division (3x^5+17x^4-51x^2+3x+40)/(x+5)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+++-++
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
+++-++
Step 3
Multiply the new quotient term by the divisor.
+++-++
++
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
+++-++
--
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+++-++
--
+
Step 6
Pull the next terms from the original dividend down into the current dividend.
+++-++
--
++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
+
+++-++
--
++
Step 8
Multiply the new quotient term by the divisor.
+
+++-++
--
++
++
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
+
+++-++
--
++
--
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
+++-++
--
++
--
-
Step 11
Pull the next terms from the original dividend down into the current dividend.
+
+++-++
--
++
--
--
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
+-
+++-++
--
++
--
--
Step 13
Multiply the new quotient term by the divisor.
+-
+++-++
--
++
--
--
--
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
+-
+++-++
--
++
--
--
++
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-
+++-++
--
++
--
--
++
-
Step 16
Pull the next terms from the original dividend down into the current dividend.
+-
+++-++
--
++
--
--
++
-+
Step 17
Divide the highest order term in the dividend by the highest order term in divisor .
+--
+++-++
--
++
--
--
++
-+
Step 18
Multiply the new quotient term by the divisor.
+--
+++-++
--
++
--
--
++
-+
--
Step 19
The expression needs to be subtracted from the dividend, so change all the signs in
+--
+++-++
--
++
--
--
++
-+
++
Step 20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+--
+++-++
--
++
--
--
++
-+
++
+
Step 21
Pull the next terms from the original dividend down into the current dividend.
+--
+++-++
--
++
--
--
++
-+
++
++
Step 22
Divide the highest order term in the dividend by the highest order term in divisor .
+--+
+++-++
--
++
--
--
++
-+
++
++
Step 23
Multiply the new quotient term by the divisor.
+--+
+++-++
--
++
--
--
++
-+
++
++
++
Step 24
The expression needs to be subtracted from the dividend, so change all the signs in
+--+
+++-++
--
++
--
--
++
-+
++
++
--
Step 25
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+--+
+++-++
--
++
--
--
++
-+
++
++
--
Step 26
Since the remander is , the final answer is the quotient.