Enter a problem...
Algebra Examples
Step 1
Step 1.1
Use the Binomial Theorem.
Step 1.2
Simplify terms.
Step 1.2.1
Simplify each term.
Step 1.2.1.1
Multiply by .
Step 1.2.1.2
One to any power is one.
Step 1.2.1.3
Multiply by .
Step 1.2.1.4
One to any power is one.
Step 1.2.2
Apply the distributive property.
Step 1.3
Simplify.
Step 1.3.1
Multiply by .
Step 1.3.2
Multiply by .
Step 1.3.3
Multiply by .
Step 1.4
Reorder factors in .
Step 1.5
Reorder and .
Step 1.6
Reorder and .
Step 1.7
Reorder and .
Step 1.8
Reorder and .
Step 2
Step 2.1
Simplify and reorder the polynomial.
Step 2.1.1
Simplify each term.
Step 2.1.1.1
Multiply by by adding the exponents.
Step 2.1.1.1.1
Move .
Step 2.1.1.1.2
Multiply by .
Step 2.1.1.1.2.1
Raise to the power of .
Step 2.1.1.1.2.2
Use the power rule to combine exponents.
Step 2.1.1.1.3
Add and .
Step 2.1.1.2
Apply the distributive property.
Step 2.1.1.3
Rewrite using the commutative property of multiplication.
Step 2.1.1.4
Multiply by .
Step 2.1.1.5
Simplify each term.
Step 2.1.1.5.1
Multiply by by adding the exponents.
Step 2.1.1.5.1.1
Move .
Step 2.1.1.5.1.2
Multiply by .
Step 2.1.1.5.1.2.1
Raise to the power of .
Step 2.1.1.5.1.2.2
Use the power rule to combine exponents.
Step 2.1.1.5.1.3
Add and .
Step 2.1.1.5.2
Multiply by .
Step 2.1.1.6
Multiply by by adding the exponents.
Step 2.1.1.6.1
Move .
Step 2.1.1.6.2
Multiply by .
Step 2.1.1.6.2.1
Raise to the power of .
Step 2.1.1.6.2.2
Use the power rule to combine exponents.
Step 2.1.1.6.3
Add and .
Step 2.1.1.7
Apply the distributive property.
Step 2.1.1.8
Rewrite using the commutative property of multiplication.
Step 2.1.1.9
Multiply by .
Step 2.1.1.10
Simplify each term.
Step 2.1.1.10.1
Multiply by by adding the exponents.
Step 2.1.1.10.1.1
Move .
Step 2.1.1.10.1.2
Multiply by .
Step 2.1.1.10.1.2.1
Raise to the power of .
Step 2.1.1.10.1.2.2
Use the power rule to combine exponents.
Step 2.1.1.10.1.3
Add and .
Step 2.1.1.10.2
Multiply by .
Step 2.1.1.11
Multiply by by adding the exponents.
Step 2.1.1.11.1
Move .
Step 2.1.1.11.2
Multiply by .
Step 2.1.1.12
Apply the distributive property.
Step 2.1.1.13
Rewrite using the commutative property of multiplication.
Step 2.1.1.14
Multiply by .
Step 2.1.1.15
Simplify each term.
Step 2.1.1.15.1
Multiply by by adding the exponents.
Step 2.1.1.15.1.1
Move .
Step 2.1.1.15.1.2
Multiply by .
Step 2.1.1.15.1.2.1
Raise to the power of .
Step 2.1.1.15.1.2.2
Use the power rule to combine exponents.
Step 2.1.1.15.1.3
Add and .
Step 2.1.1.15.2
Multiply by .
Step 2.1.1.16
Apply the distributive property.
Step 2.1.1.17
Rewrite using the commutative property of multiplication.
Step 2.1.1.18
Multiply by .
Step 2.1.1.19
Simplify each term.
Step 2.1.1.19.1
Multiply by by adding the exponents.
Step 2.1.1.19.1.1
Move .
Step 2.1.1.19.1.2
Multiply by .
Step 2.1.1.19.2
Multiply by .
Step 2.1.2
Simplify by adding terms.
Step 2.1.2.1
Add and .
Step 2.1.2.2
Add and .
Step 2.1.2.3
Add and .
Step 2.2
Identify the exponents on the variables in each term, and add them together to find the degree of each term.
Step 2.3
The largest exponent is the degree of the polynomial.
Step 3
Step 3.1
Simplify the polynomial, then reorder it left to right starting with the highest degree term.
Step 3.1.1
Simplify each term.
Step 3.1.1.1
Multiply by by adding the exponents.
Step 3.1.1.1.1
Move .
Step 3.1.1.1.2
Multiply by .
Step 3.1.1.1.2.1
Raise to the power of .
Step 3.1.1.1.2.2
Use the power rule to combine exponents.
Step 3.1.1.1.3
Add and .
Step 3.1.1.2
Apply the distributive property.
Step 3.1.1.3
Rewrite using the commutative property of multiplication.
Step 3.1.1.4
Multiply by .
Step 3.1.1.5
Simplify each term.
Step 3.1.1.5.1
Multiply by by adding the exponents.
Step 3.1.1.5.1.1
Move .
Step 3.1.1.5.1.2
Multiply by .
Step 3.1.1.5.1.2.1
Raise to the power of .
Step 3.1.1.5.1.2.2
Use the power rule to combine exponents.
Step 3.1.1.5.1.3
Add and .
Step 3.1.1.5.2
Multiply by .
Step 3.1.1.6
Multiply by by adding the exponents.
Step 3.1.1.6.1
Move .
Step 3.1.1.6.2
Multiply by .
Step 3.1.1.6.2.1
Raise to the power of .
Step 3.1.1.6.2.2
Use the power rule to combine exponents.
Step 3.1.1.6.3
Add and .
Step 3.1.1.7
Apply the distributive property.
Step 3.1.1.8
Rewrite using the commutative property of multiplication.
Step 3.1.1.9
Multiply by .
Step 3.1.1.10
Simplify each term.
Step 3.1.1.10.1
Multiply by by adding the exponents.
Step 3.1.1.10.1.1
Move .
Step 3.1.1.10.1.2
Multiply by .
Step 3.1.1.10.1.2.1
Raise to the power of .
Step 3.1.1.10.1.2.2
Use the power rule to combine exponents.
Step 3.1.1.10.1.3
Add and .
Step 3.1.1.10.2
Multiply by .
Step 3.1.1.11
Multiply by by adding the exponents.
Step 3.1.1.11.1
Move .
Step 3.1.1.11.2
Multiply by .
Step 3.1.1.12
Apply the distributive property.
Step 3.1.1.13
Rewrite using the commutative property of multiplication.
Step 3.1.1.14
Multiply by .
Step 3.1.1.15
Simplify each term.
Step 3.1.1.15.1
Multiply by by adding the exponents.
Step 3.1.1.15.1.1
Move .
Step 3.1.1.15.1.2
Multiply by .
Step 3.1.1.15.1.2.1
Raise to the power of .
Step 3.1.1.15.1.2.2
Use the power rule to combine exponents.
Step 3.1.1.15.1.3
Add and .
Step 3.1.1.15.2
Multiply by .
Step 3.1.1.16
Apply the distributive property.
Step 3.1.1.17
Rewrite using the commutative property of multiplication.
Step 3.1.1.18
Multiply by .
Step 3.1.1.19
Simplify each term.
Step 3.1.1.19.1
Multiply by by adding the exponents.
Step 3.1.1.19.1.1
Move .
Step 3.1.1.19.1.2
Multiply by .
Step 3.1.1.19.2
Multiply by .
Step 3.1.2
Simplify by adding terms.
Step 3.1.2.1
Add and .
Step 3.1.2.2
Add and .
Step 3.1.2.3
Add and .
Step 3.2
The leading term in a polynomial is the term with the highest degree.
Step 4
Step 4.1
The leading term in a polynomial is the term with the highest degree.
Step 4.2
The leading coefficient in a polynomial is the coefficient of the leading term.
Step 5
List the results.
Polynomial Degree:
Leading Term:
Leading Coefficient: