Algebra Examples

Solve for x x^(-2/3)-7x^(-1/3)-15=0
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite the expression using the negative exponent rule .
Step 1.2
Rewrite the expression using the negative exponent rule .
Step 1.3
Combine and .
Step 1.4
Move the negative in front of the fraction.
Step 2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Step 2.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.4
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.5
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.6
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either term.
Step 3
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1.1
Cancel the common factor.
Step 3.2.1.1.2
Rewrite the expression.
Step 3.2.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.2.1
Move the leading negative in into the numerator.
Step 3.2.1.2.2
Factor out of .
Step 3.2.1.2.3
Cancel the common factor.
Step 3.2.1.2.4
Rewrite the expression.
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Multiply by .
Step 4
Solve the equation.
Tap for more steps...
Step 4.1
Find a common factor that is present in each term.
Step 4.2
Substitute for .
Step 4.3
Solve for .
Tap for more steps...
Step 4.3.1
Remove parentheses.
Step 4.3.2
Use the quadratic formula to find the solutions.
Step 4.3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 4.3.4
Simplify.
Tap for more steps...
Step 4.3.4.1
Simplify the numerator.
Tap for more steps...
Step 4.3.4.1.1
Raise to the power of .
Step 4.3.4.1.2
Multiply .
Tap for more steps...
Step 4.3.4.1.2.1
Multiply by .
Step 4.3.4.1.2.2
Multiply by .
Step 4.3.4.1.3
Add and .
Step 4.3.4.2
Multiply by .
Step 4.3.4.3
Move the negative in front of the fraction.
Step 4.3.5
The final answer is the combination of both solutions.
Step 4.4
Substitute for .
Step 4.5
Solve for for .
Tap for more steps...
Step 4.5.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 4.5.2
Simplify the exponent.
Tap for more steps...
Step 4.5.2.1
Simplify the left side.
Tap for more steps...
Step 4.5.2.1.1
Simplify .
Tap for more steps...
Step 4.5.2.1.1.1
Multiply the exponents in .
Tap for more steps...
Step 4.5.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 4.5.2.1.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 4.5.2.1.1.1.2.1
Cancel the common factor.
Step 4.5.2.1.1.1.2.2
Rewrite the expression.
Step 4.5.2.1.1.2
Simplify.
Step 4.5.2.2
Simplify the right side.
Tap for more steps...
Step 4.5.2.2.1
Simplify .
Tap for more steps...
Step 4.5.2.2.1.1
Use the power rule to distribute the exponent.
Tap for more steps...
Step 4.5.2.2.1.1.1
Apply the product rule to .
Step 4.5.2.2.1.1.2
Apply the product rule to .
Step 4.5.2.2.1.2
Evaluate the exponents.
Tap for more steps...
Step 4.5.2.2.1.2.1
Raise to the power of .
Step 4.5.2.2.1.2.2
Raise to the power of .
Step 4.5.2.2.1.3
Use the Binomial Theorem.
Step 4.5.2.2.1.4
Simplify terms.
Tap for more steps...
Step 4.5.2.2.1.4.1
Simplify each term.
Tap for more steps...
Step 4.5.2.2.1.4.1.1
Raise to the power of .
Step 4.5.2.2.1.4.1.2
Raise to the power of .
Step 4.5.2.2.1.4.1.3
Multiply by .
Step 4.5.2.2.1.4.1.4
Multiply by .
Step 4.5.2.2.1.4.1.5
Rewrite as .
Tap for more steps...
Step 4.5.2.2.1.4.1.5.1
Use to rewrite as .
Step 4.5.2.2.1.4.1.5.2
Apply the power rule and multiply exponents, .
Step 4.5.2.2.1.4.1.5.3
Combine and .
Step 4.5.2.2.1.4.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 4.5.2.2.1.4.1.5.4.1
Cancel the common factor.
Step 4.5.2.2.1.4.1.5.4.2
Rewrite the expression.
Step 4.5.2.2.1.4.1.5.5
Evaluate the exponent.
Step 4.5.2.2.1.4.1.6
Multiply by .
Step 4.5.2.2.1.4.1.7
Rewrite as .
Step 4.5.2.2.1.4.1.8
Raise to the power of .
Step 4.5.2.2.1.4.1.9
Rewrite as .
Tap for more steps...
Step 4.5.2.2.1.4.1.9.1
Factor out of .
Step 4.5.2.2.1.4.1.9.2
Rewrite as .
Step 4.5.2.2.1.4.1.10
Pull terms out from under the radical.
Step 4.5.2.2.1.4.2
Simplify terms.
Tap for more steps...
Step 4.5.2.2.1.4.2.1
Add and .
Step 4.5.2.2.1.4.2.2
Add and .
Step 4.5.2.2.1.4.2.3
Cancel the common factor of and .
Tap for more steps...
Step 4.5.2.2.1.4.2.3.1
Factor out of .
Step 4.5.2.2.1.4.2.3.2
Factor out of .
Step 4.5.2.2.1.4.2.3.3
Factor out of .
Step 4.5.2.2.1.4.2.3.4
Cancel the common factors.
Tap for more steps...
Step 4.5.2.2.1.4.2.3.4.1
Factor out of .
Step 4.5.2.2.1.4.2.3.4.2
Cancel the common factor.
Step 4.5.2.2.1.4.2.3.4.3
Rewrite the expression.
Step 4.6
Solve for for .
Tap for more steps...
Step 4.6.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 4.6.2
Simplify the exponent.
Tap for more steps...
Step 4.6.2.1
Simplify the left side.
Tap for more steps...
Step 4.6.2.1.1
Simplify .
Tap for more steps...
Step 4.6.2.1.1.1
Multiply the exponents in .
Tap for more steps...
Step 4.6.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 4.6.2.1.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 4.6.2.1.1.1.2.1
Cancel the common factor.
Step 4.6.2.1.1.1.2.2
Rewrite the expression.
Step 4.6.2.1.1.2
Simplify.
Step 4.6.2.2
Simplify the right side.
Tap for more steps...
Step 4.6.2.2.1
Simplify .
Tap for more steps...
Step 4.6.2.2.1.1
Use the power rule to distribute the exponent.
Tap for more steps...
Step 4.6.2.2.1.1.1
Apply the product rule to .
Step 4.6.2.2.1.1.2
Apply the product rule to .
Step 4.6.2.2.1.2
Evaluate the exponents.
Tap for more steps...
Step 4.6.2.2.1.2.1
Raise to the power of .
Step 4.6.2.2.1.2.2
Raise to the power of .
Step 4.6.2.2.1.3
Use the Binomial Theorem.
Step 4.6.2.2.1.4
Simplify terms.
Tap for more steps...
Step 4.6.2.2.1.4.1
Simplify each term.
Tap for more steps...
Step 4.6.2.2.1.4.1.1
Raise to the power of .
Step 4.6.2.2.1.4.1.2
Raise to the power of .
Step 4.6.2.2.1.4.1.3
Multiply by .
Step 4.6.2.2.1.4.1.4
Multiply by .
Step 4.6.2.2.1.4.1.5
Multiply by .
Step 4.6.2.2.1.4.1.6
Apply the product rule to .
Step 4.6.2.2.1.4.1.7
Raise to the power of .
Step 4.6.2.2.1.4.1.8
Multiply by .
Step 4.6.2.2.1.4.1.9
Rewrite as .
Tap for more steps...
Step 4.6.2.2.1.4.1.9.1
Use to rewrite as .
Step 4.6.2.2.1.4.1.9.2
Apply the power rule and multiply exponents, .
Step 4.6.2.2.1.4.1.9.3
Combine and .
Step 4.6.2.2.1.4.1.9.4
Cancel the common factor of .
Tap for more steps...
Step 4.6.2.2.1.4.1.9.4.1
Cancel the common factor.
Step 4.6.2.2.1.4.1.9.4.2
Rewrite the expression.
Step 4.6.2.2.1.4.1.9.5
Evaluate the exponent.
Step 4.6.2.2.1.4.1.10
Multiply by .
Step 4.6.2.2.1.4.1.11
Apply the product rule to .
Step 4.6.2.2.1.4.1.12
Raise to the power of .
Step 4.6.2.2.1.4.1.13
Rewrite as .
Step 4.6.2.2.1.4.1.14
Raise to the power of .
Step 4.6.2.2.1.4.1.15
Rewrite as .
Tap for more steps...
Step 4.6.2.2.1.4.1.15.1
Factor out of .
Step 4.6.2.2.1.4.1.15.2
Rewrite as .
Step 4.6.2.2.1.4.1.16
Pull terms out from under the radical.
Step 4.6.2.2.1.4.1.17
Multiply by .
Step 4.6.2.2.1.4.2
Simplify terms.
Tap for more steps...
Step 4.6.2.2.1.4.2.1
Add and .
Step 4.6.2.2.1.4.2.2
Subtract from .
Step 4.6.2.2.1.4.2.3
Cancel the common factor of and .
Tap for more steps...
Step 4.6.2.2.1.4.2.3.1
Factor out of .
Step 4.6.2.2.1.4.2.3.2
Factor out of .
Step 4.6.2.2.1.4.2.3.3
Factor out of .
Step 4.6.2.2.1.4.2.3.4
Cancel the common factors.
Tap for more steps...
Step 4.6.2.2.1.4.2.3.4.1
Factor out of .
Step 4.6.2.2.1.4.2.3.4.2
Cancel the common factor.
Step 4.6.2.2.1.4.2.3.4.3
Rewrite the expression.
Step 4.7
List all of the solutions.
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form: