Enter a problem...
Algebra Examples
Step 1
Step 1.1
Rewrite the expression using the negative exponent rule .
Step 1.2
Rewrite the expression using the negative exponent rule .
Step 1.3
Combine and .
Step 1.4
Move the negative in front of the fraction.
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Step 2.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.4
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.5
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.6
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either term.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Cancel the common factor of .
Step 3.2.1.1.1
Cancel the common factor.
Step 3.2.1.1.2
Rewrite the expression.
Step 3.2.1.2
Cancel the common factor of .
Step 3.2.1.2.1
Move the leading negative in into the numerator.
Step 3.2.1.2.2
Factor out of .
Step 3.2.1.2.3
Cancel the common factor.
Step 3.2.1.2.4
Rewrite the expression.
Step 3.3
Simplify the right side.
Step 3.3.1
Multiply by .
Step 4
Step 4.1
Find a common factor that is present in each term.
Step 4.2
Substitute for .
Step 4.3
Solve for .
Step 4.3.1
Remove parentheses.
Step 4.3.2
Use the quadratic formula to find the solutions.
Step 4.3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 4.3.4
Simplify.
Step 4.3.4.1
Simplify the numerator.
Step 4.3.4.1.1
Raise to the power of .
Step 4.3.4.1.2
Multiply .
Step 4.3.4.1.2.1
Multiply by .
Step 4.3.4.1.2.2
Multiply by .
Step 4.3.4.1.3
Add and .
Step 4.3.4.2
Multiply by .
Step 4.3.4.3
Move the negative in front of the fraction.
Step 4.3.5
The final answer is the combination of both solutions.
Step 4.4
Substitute for .
Step 4.5
Solve for for .
Step 4.5.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 4.5.2
Simplify the exponent.
Step 4.5.2.1
Simplify the left side.
Step 4.5.2.1.1
Simplify .
Step 4.5.2.1.1.1
Multiply the exponents in .
Step 4.5.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 4.5.2.1.1.1.2
Cancel the common factor of .
Step 4.5.2.1.1.1.2.1
Cancel the common factor.
Step 4.5.2.1.1.1.2.2
Rewrite the expression.
Step 4.5.2.1.1.2
Simplify.
Step 4.5.2.2
Simplify the right side.
Step 4.5.2.2.1
Simplify .
Step 4.5.2.2.1.1
Use the power rule to distribute the exponent.
Step 4.5.2.2.1.1.1
Apply the product rule to .
Step 4.5.2.2.1.1.2
Apply the product rule to .
Step 4.5.2.2.1.2
Evaluate the exponents.
Step 4.5.2.2.1.2.1
Raise to the power of .
Step 4.5.2.2.1.2.2
Raise to the power of .
Step 4.5.2.2.1.3
Use the Binomial Theorem.
Step 4.5.2.2.1.4
Simplify terms.
Step 4.5.2.2.1.4.1
Simplify each term.
Step 4.5.2.2.1.4.1.1
Raise to the power of .
Step 4.5.2.2.1.4.1.2
Raise to the power of .
Step 4.5.2.2.1.4.1.3
Multiply by .
Step 4.5.2.2.1.4.1.4
Multiply by .
Step 4.5.2.2.1.4.1.5
Rewrite as .
Step 4.5.2.2.1.4.1.5.1
Use to rewrite as .
Step 4.5.2.2.1.4.1.5.2
Apply the power rule and multiply exponents, .
Step 4.5.2.2.1.4.1.5.3
Combine and .
Step 4.5.2.2.1.4.1.5.4
Cancel the common factor of .
Step 4.5.2.2.1.4.1.5.4.1
Cancel the common factor.
Step 4.5.2.2.1.4.1.5.4.2
Rewrite the expression.
Step 4.5.2.2.1.4.1.5.5
Evaluate the exponent.
Step 4.5.2.2.1.4.1.6
Multiply by .
Step 4.5.2.2.1.4.1.7
Rewrite as .
Step 4.5.2.2.1.4.1.8
Raise to the power of .
Step 4.5.2.2.1.4.1.9
Rewrite as .
Step 4.5.2.2.1.4.1.9.1
Factor out of .
Step 4.5.2.2.1.4.1.9.2
Rewrite as .
Step 4.5.2.2.1.4.1.10
Pull terms out from under the radical.
Step 4.5.2.2.1.4.2
Simplify terms.
Step 4.5.2.2.1.4.2.1
Add and .
Step 4.5.2.2.1.4.2.2
Add and .
Step 4.5.2.2.1.4.2.3
Cancel the common factor of and .
Step 4.5.2.2.1.4.2.3.1
Factor out of .
Step 4.5.2.2.1.4.2.3.2
Factor out of .
Step 4.5.2.2.1.4.2.3.3
Factor out of .
Step 4.5.2.2.1.4.2.3.4
Cancel the common factors.
Step 4.5.2.2.1.4.2.3.4.1
Factor out of .
Step 4.5.2.2.1.4.2.3.4.2
Cancel the common factor.
Step 4.5.2.2.1.4.2.3.4.3
Rewrite the expression.
Step 4.6
Solve for for .
Step 4.6.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 4.6.2
Simplify the exponent.
Step 4.6.2.1
Simplify the left side.
Step 4.6.2.1.1
Simplify .
Step 4.6.2.1.1.1
Multiply the exponents in .
Step 4.6.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 4.6.2.1.1.1.2
Cancel the common factor of .
Step 4.6.2.1.1.1.2.1
Cancel the common factor.
Step 4.6.2.1.1.1.2.2
Rewrite the expression.
Step 4.6.2.1.1.2
Simplify.
Step 4.6.2.2
Simplify the right side.
Step 4.6.2.2.1
Simplify .
Step 4.6.2.2.1.1
Use the power rule to distribute the exponent.
Step 4.6.2.2.1.1.1
Apply the product rule to .
Step 4.6.2.2.1.1.2
Apply the product rule to .
Step 4.6.2.2.1.2
Evaluate the exponents.
Step 4.6.2.2.1.2.1
Raise to the power of .
Step 4.6.2.2.1.2.2
Raise to the power of .
Step 4.6.2.2.1.3
Use the Binomial Theorem.
Step 4.6.2.2.1.4
Simplify terms.
Step 4.6.2.2.1.4.1
Simplify each term.
Step 4.6.2.2.1.4.1.1
Raise to the power of .
Step 4.6.2.2.1.4.1.2
Raise to the power of .
Step 4.6.2.2.1.4.1.3
Multiply by .
Step 4.6.2.2.1.4.1.4
Multiply by .
Step 4.6.2.2.1.4.1.5
Multiply by .
Step 4.6.2.2.1.4.1.6
Apply the product rule to .
Step 4.6.2.2.1.4.1.7
Raise to the power of .
Step 4.6.2.2.1.4.1.8
Multiply by .
Step 4.6.2.2.1.4.1.9
Rewrite as .
Step 4.6.2.2.1.4.1.9.1
Use to rewrite as .
Step 4.6.2.2.1.4.1.9.2
Apply the power rule and multiply exponents, .
Step 4.6.2.2.1.4.1.9.3
Combine and .
Step 4.6.2.2.1.4.1.9.4
Cancel the common factor of .
Step 4.6.2.2.1.4.1.9.4.1
Cancel the common factor.
Step 4.6.2.2.1.4.1.9.4.2
Rewrite the expression.
Step 4.6.2.2.1.4.1.9.5
Evaluate the exponent.
Step 4.6.2.2.1.4.1.10
Multiply by .
Step 4.6.2.2.1.4.1.11
Apply the product rule to .
Step 4.6.2.2.1.4.1.12
Raise to the power of .
Step 4.6.2.2.1.4.1.13
Rewrite as .
Step 4.6.2.2.1.4.1.14
Raise to the power of .
Step 4.6.2.2.1.4.1.15
Rewrite as .
Step 4.6.2.2.1.4.1.15.1
Factor out of .
Step 4.6.2.2.1.4.1.15.2
Rewrite as .
Step 4.6.2.2.1.4.1.16
Pull terms out from under the radical.
Step 4.6.2.2.1.4.1.17
Multiply by .
Step 4.6.2.2.1.4.2
Simplify terms.
Step 4.6.2.2.1.4.2.1
Add and .
Step 4.6.2.2.1.4.2.2
Subtract from .
Step 4.6.2.2.1.4.2.3
Cancel the common factor of and .
Step 4.6.2.2.1.4.2.3.1
Factor out of .
Step 4.6.2.2.1.4.2.3.2
Factor out of .
Step 4.6.2.2.1.4.2.3.3
Factor out of .
Step 4.6.2.2.1.4.2.3.4
Cancel the common factors.
Step 4.6.2.2.1.4.2.3.4.1
Factor out of .
Step 4.6.2.2.1.4.2.3.4.2
Cancel the common factor.
Step 4.6.2.2.1.4.2.3.4.3
Rewrite the expression.
Step 4.7
List all of the solutions.
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form: