Enter a problem...
Algebra Examples
Step 1
Eliminate the equal sides of each equation and combine.
Step 2
Step 2.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 2.2
Move all terms containing to the left side of the equation.
Step 2.2.1
Add to both sides of the equation.
Step 2.2.2
Add and .
Step 2.3
Move all terms to the left side of the equation and simplify.
Step 2.3.1
Subtract from both sides of the equation.
Step 2.3.2
Subtract from .
Step 2.4
Use the quadratic formula to find the solutions.
Step 2.5
Substitute the values , , and into the quadratic formula and solve for .
Step 2.6
Simplify.
Step 2.6.1
Simplify the numerator.
Step 2.6.1.1
Raise to the power of .
Step 2.6.1.2
Multiply .
Step 2.6.1.2.1
Multiply by .
Step 2.6.1.2.2
Multiply by .
Step 2.6.1.3
Subtract from .
Step 2.6.1.4
Rewrite as .
Step 2.6.1.5
Rewrite as .
Step 2.6.1.6
Rewrite as .
Step 2.6.1.7
Rewrite as .
Step 2.6.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 2.6.1.9
Move to the left of .
Step 2.6.2
Multiply by .
Step 2.6.3
Simplify .
Step 2.7
Simplify the expression to solve for the portion of the .
Step 2.7.1
Simplify the numerator.
Step 2.7.1.1
Raise to the power of .
Step 2.7.1.2
Multiply .
Step 2.7.1.2.1
Multiply by .
Step 2.7.1.2.2
Multiply by .
Step 2.7.1.3
Subtract from .
Step 2.7.1.4
Rewrite as .
Step 2.7.1.5
Rewrite as .
Step 2.7.1.6
Rewrite as .
Step 2.7.1.7
Rewrite as .
Step 2.7.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 2.7.1.9
Move to the left of .
Step 2.7.2
Multiply by .
Step 2.7.3
Simplify .
Step 2.7.4
Change the to .
Step 2.7.5
Split the fraction into two fractions.
Step 2.8
Simplify the expression to solve for the portion of the .
Step 2.8.1
Simplify the numerator.
Step 2.8.1.1
Raise to the power of .
Step 2.8.1.2
Multiply .
Step 2.8.1.2.1
Multiply by .
Step 2.8.1.2.2
Multiply by .
Step 2.8.1.3
Subtract from .
Step 2.8.1.4
Rewrite as .
Step 2.8.1.5
Rewrite as .
Step 2.8.1.6
Rewrite as .
Step 2.8.1.7
Rewrite as .
Step 2.8.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 2.8.1.9
Move to the left of .
Step 2.8.2
Multiply by .
Step 2.8.3
Simplify .
Step 2.8.4
Change the to .
Step 2.8.5
Split the fraction into two fractions.
Step 2.8.6
Move the negative in front of the fraction.
Step 2.9
The final answer is the combination of both solutions.
Step 3
Step 3.1
Substitute for .
Step 3.2
Simplify .
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Rewrite as .
Step 3.2.1.2
Expand using the FOIL Method.
Step 3.2.1.2.1
Apply the distributive property.
Step 3.2.1.2.2
Apply the distributive property.
Step 3.2.1.2.3
Apply the distributive property.
Step 3.2.1.3
Simplify and combine like terms.
Step 3.2.1.3.1
Simplify each term.
Step 3.2.1.3.1.1
Multiply .
Step 3.2.1.3.1.1.1
Multiply by .
Step 3.2.1.3.1.1.2
Multiply by .
Step 3.2.1.3.1.2
Multiply .
Step 3.2.1.3.1.2.1
Multiply by .
Step 3.2.1.3.1.2.2
Multiply by .
Step 3.2.1.3.1.3
Multiply .
Step 3.2.1.3.1.3.1
Multiply by .
Step 3.2.1.3.1.3.2
Multiply by .
Step 3.2.1.3.1.4
Multiply .
Step 3.2.1.3.1.4.1
Multiply by .
Step 3.2.1.3.1.4.2
Raise to the power of .
Step 3.2.1.3.1.4.3
Raise to the power of .
Step 3.2.1.3.1.4.4
Use the power rule to combine exponents.
Step 3.2.1.3.1.4.5
Add and .
Step 3.2.1.3.1.4.6
Multiply by .
Step 3.2.1.3.1.5
Rewrite as .
Step 3.2.1.3.1.6
Move the negative in front of the fraction.
Step 3.2.1.3.2
Combine the numerators over the common denominator.
Step 3.2.1.3.3
Subtract from .
Step 3.2.1.3.4
Combine the numerators over the common denominator.
Step 3.2.1.4
Simplify each term.
Step 3.2.1.4.1
Divide by .
Step 3.2.1.4.2
Cancel the common factor of and .
Step 3.2.1.4.2.1
Factor out of .
Step 3.2.1.4.2.2
Cancel the common factors.
Step 3.2.1.4.2.2.1
Factor out of .
Step 3.2.1.4.2.2.2
Cancel the common factor.
Step 3.2.1.4.2.2.3
Rewrite the expression.
Step 3.2.1.5
Add and .
Step 3.2.1.6
Cancel the common factor of .
Step 3.2.1.6.1
Cancel the common factor.
Step 3.2.1.6.2
Rewrite the expression.
Step 3.2.1.7
Apply the distributive property.
Step 3.2.1.8
Combine and .
Step 3.2.1.9
Combine and .
Step 3.2.1.10
Simplify each term.
Step 3.2.1.10.1
Move the negative in front of the fraction.
Step 3.2.1.10.2
Move the negative in front of the fraction.
Step 3.2.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.3
Combine and .
Step 3.2.4
Simplify the expression.
Step 3.2.4.1
Combine the numerators over the common denominator.
Step 3.2.4.2
Move the negative in front of the fraction.
Step 3.2.5
To write as a fraction with a common denominator, multiply by .
Step 3.2.6
Combine and .
Step 3.2.7
Combine the numerators over the common denominator.
Step 3.2.8
Simplify the numerator.
Step 3.2.8.1
Multiply by .
Step 3.2.8.2
Add and .
Step 3.2.9
Reorder and .
Step 4
Step 4.1
Substitute for .
Step 4.2
Simplify .
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Rewrite as .
Step 4.2.1.2
Expand using the FOIL Method.
Step 4.2.1.2.1
Apply the distributive property.
Step 4.2.1.2.2
Apply the distributive property.
Step 4.2.1.2.3
Apply the distributive property.
Step 4.2.1.3
Simplify and combine like terms.
Step 4.2.1.3.1
Simplify each term.
Step 4.2.1.3.1.1
Multiply .
Step 4.2.1.3.1.1.1
Multiply by .
Step 4.2.1.3.1.1.2
Multiply by .
Step 4.2.1.3.1.2
Multiply .
Step 4.2.1.3.1.2.1
Multiply by .
Step 4.2.1.3.1.2.2
Multiply by .
Step 4.2.1.3.1.3
Multiply .
Step 4.2.1.3.1.3.1
Multiply by .
Step 4.2.1.3.1.3.2
Multiply by .
Step 4.2.1.3.1.4
Multiply .
Step 4.2.1.3.1.4.1
Multiply by .
Step 4.2.1.3.1.4.2
Multiply by .
Step 4.2.1.3.1.4.3
Multiply by .
Step 4.2.1.3.1.4.4
Raise to the power of .
Step 4.2.1.3.1.4.5
Raise to the power of .
Step 4.2.1.3.1.4.6
Use the power rule to combine exponents.
Step 4.2.1.3.1.4.7
Add and .
Step 4.2.1.3.1.4.8
Multiply by .
Step 4.2.1.3.1.5
Rewrite as .
Step 4.2.1.3.1.6
Move the negative in front of the fraction.
Step 4.2.1.3.2
Combine the numerators over the common denominator.
Step 4.2.1.3.3
Subtract from .
Step 4.2.1.3.4
Subtract from .
Step 4.2.1.4
Simplify each term.
Step 4.2.1.4.1
Divide by .
Step 4.2.1.4.2
Cancel the common factor of .
Step 4.2.1.4.2.1
Factor out of .
Step 4.2.1.4.2.2
Factor out of .
Step 4.2.1.4.2.3
Cancel the common factor.
Step 4.2.1.4.2.4
Rewrite the expression.
Step 4.2.1.4.3
Rewrite as .
Step 4.2.1.5
Subtract from .
Step 4.2.1.6
Cancel the common factor of .
Step 4.2.1.6.1
Move the leading negative in into the numerator.
Step 4.2.1.6.2
Cancel the common factor.
Step 4.2.1.6.3
Rewrite the expression.
Step 4.2.1.7
Apply the distributive property.
Step 4.2.1.8
Combine and .
Step 4.2.1.9
Multiply .
Step 4.2.1.9.1
Multiply by .
Step 4.2.1.9.2
Combine and .
Step 4.2.1.10
Move the negative in front of the fraction.
Step 4.2.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.3
Combine and .
Step 4.2.4
Combine the numerators over the common denominator.
Step 4.2.5
To write as a fraction with a common denominator, multiply by .
Step 4.2.6
Combine and .
Step 4.2.7
Combine the numerators over the common denominator.
Step 4.2.8
Simplify the numerator.
Step 4.2.8.1
Multiply by .
Step 4.2.8.2
Add and .
Step 4.2.9
Reorder and .
Step 5
List all of the solutions.
Step 6