Enter a problem...
Algebra Examples
divided by
Step 1
Write the problem as a mathematical expression.
Step 2
Step 2.1
Reorder and .
Step 2.2
Reorder and .
Step 2.3
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
| - | + | + | - |
Step 2.4
Divide the highest order term in the dividend by the highest order term in divisor .
| - | + | + | - |
Step 2.5
Multiply the new quotient term by the divisor.
| - | + | + | - | ||||||||
| + | - |
Step 2.6
The expression needs to be subtracted from the dividend, so change all the signs in
| - | + | + | - | ||||||||
| - | + |
Step 2.7
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + |
Step 2.8
Pull the next terms from the original dividend down into the current dividend.
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + |
Step 2.9
Divide the highest order term in the dividend by the highest order term in divisor .
| + | |||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + |
Step 2.10
Multiply the new quotient term by the divisor.
| + | |||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | - |
Step 2.11
The expression needs to be subtracted from the dividend, so change all the signs in
| + | |||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + |
Step 2.12
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| + | |||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + |
Step 2.13
Pull the next terms from the original dividend down into the current dividend.
| + | |||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + | - |
Step 2.14
Divide the highest order term in the dividend by the highest order term in divisor .
| + | + | ||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + | - |
Step 2.15
Multiply the new quotient term by the divisor.
| + | + | ||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - |
Step 2.16
The expression needs to be subtracted from the dividend, so change all the signs in
| + | + | ||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + |
Step 2.17
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| + | + | ||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + | ||||||||||
Step 2.18
Since the remander is , the final answer is the quotient.
Step 3
Since the final term in the resulting expression is not a fraction, the remainder is .