Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Divide each term in by and simplify.
Step 3.3.1
Divide each term in by .
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of .
Step 3.3.2.1.1
Cancel the common factor.
Step 3.3.2.1.2
Divide by .
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Move the negative in front of the fraction.
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify the numerator.
Step 5.2.3.1
Use the Binomial Theorem.
Step 5.2.3.2
Apply the distributive property.
Step 5.2.3.3
Simplify.
Step 5.2.3.3.1
Rewrite using the commutative property of multiplication.
Step 5.2.3.3.2
Rewrite using the commutative property of multiplication.
Step 5.2.4
Simplify terms.
Step 5.2.4.1
Combine the numerators over the common denominator.
Step 5.2.4.2
Combine the opposite terms in .
Step 5.2.4.2.1
Subtract from .
Step 5.2.4.2.2
Add and .
Step 5.2.4.3
Simplify the expression.
Step 5.2.4.3.1
Move .
Step 5.2.4.3.2
Move .
Step 5.2.4.3.3
Move .
Step 5.2.4.3.4
Move .
Step 5.2.4.3.5
Reorder and .
Step 5.2.4.3.6
Move .
Step 5.2.4.3.7
Move .
Step 5.2.4.3.8
Reorder and .
Step 5.2.4.4
Factor out of .
Step 5.2.4.4.1
Factor out of .
Step 5.2.4.4.2
Factor out of .
Step 5.2.4.4.3
Factor out of .
Step 5.2.4.4.4
Factor out of .
Step 5.2.4.4.5
Factor out of .
Step 5.2.4.4.6
Factor out of .
Step 5.2.4.4.7
Factor out of .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Use the Binomial Theorem.
Step 5.3.3.2
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.3.3.3
Simplify each term.
Step 5.3.3.3.1
Combine and .
Step 5.3.3.3.2
Rewrite using the commutative property of multiplication.
Step 5.3.3.3.3
Combine and .
Step 5.3.3.3.4
Multiply .
Step 5.3.3.3.4.1
Combine and .
Step 5.3.3.3.4.2
Combine and .
Step 5.3.3.3.5
Move to the left of .
Step 5.3.3.3.6
Rewrite using the commutative property of multiplication.
Step 5.3.3.3.7
Combine and .
Step 5.3.3.3.8
Multiply .
Step 5.3.3.3.8.1
Combine and .
Step 5.3.3.3.8.2
Combine and .
Step 5.3.3.3.9
Move to the left of .
Step 5.3.3.3.10
Combine and .
Step 5.3.3.3.11
Combine and .
Step 5.3.3.3.12
Multiply .
Step 5.3.3.3.12.1
Multiply by .
Step 5.3.3.3.12.2
Combine and .
Step 5.3.3.3.12.3
Combine and .
Step 5.3.3.3.12.4
Combine and .
Step 5.3.3.3.13
Remove unnecessary parentheses.
Step 5.3.3.3.14
Move to the left of .
Step 5.3.3.3.15
Move the negative in front of the fraction.
Step 5.3.3.3.16
Multiply .
Step 5.3.3.3.16.1
Multiply by .
Step 5.3.3.3.16.2
Combine and .
Step 5.3.3.3.16.3
Combine and .
Step 5.3.3.3.16.4
Combine and .
Step 5.3.3.3.17
Remove unnecessary parentheses.
Step 5.3.3.3.18
Move to the left of .
Step 5.3.3.3.19
Move the negative in front of the fraction.
Step 5.3.3.3.20
Combine and .
Step 5.3.4
Simplify the expression.
Step 5.3.4.1
Reorder and .
Step 5.3.4.2
Move .
Step 5.3.4.3
Move .
Step 5.3.4.4
Reorder and .
Step 5.3.4.5
Move .
Step 5.3.4.6
Move .
Step 5.3.4.7
Reorder and .
Step 5.3.4.8
Reorder and .
Step 5.3.4.9
Reorder and .
Step 5.3.4.10
Reorder and .
Step 5.3.4.11
Reorder and .
Step 5.3.4.12
Move .
Step 5.3.4.13
Move .
Step 5.3.4.14
Reorder and .
Step 5.3.4.15
Move .
Step 5.3.4.16
Move .
Step 5.3.4.17
Reorder and .
Step 5.3.4.18
Reorder and .
Step 5.4
Since and , then is the inverse of .