Algebra Examples

Find the Inverse f(x)=b(x+a)^3+c
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Divide each term in by and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in by .
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
Step 3.3.2.1.2
Divide by .
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Move the negative in front of the fraction.
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Tap for more steps...
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify the numerator.
Tap for more steps...
Step 5.2.3.1
Use the Binomial Theorem.
Step 5.2.3.2
Apply the distributive property.
Step 5.2.3.3
Simplify.
Tap for more steps...
Step 5.2.3.3.1
Rewrite using the commutative property of multiplication.
Step 5.2.3.3.2
Rewrite using the commutative property of multiplication.
Step 5.2.4
Simplify terms.
Tap for more steps...
Step 5.2.4.1
Combine the numerators over the common denominator.
Step 5.2.4.2
Combine the opposite terms in .
Tap for more steps...
Step 5.2.4.2.1
Subtract from .
Step 5.2.4.2.2
Add and .
Step 5.2.4.3
Simplify the expression.
Tap for more steps...
Step 5.2.4.3.1
Move .
Step 5.2.4.3.2
Move .
Step 5.2.4.3.3
Move .
Step 5.2.4.3.4
Move .
Step 5.2.4.3.5
Reorder and .
Step 5.2.4.3.6
Move .
Step 5.2.4.3.7
Move .
Step 5.2.4.3.8
Reorder and .
Step 5.2.4.4
Factor out of .
Tap for more steps...
Step 5.2.4.4.1
Factor out of .
Step 5.2.4.4.2
Factor out of .
Step 5.2.4.4.3
Factor out of .
Step 5.2.4.4.4
Factor out of .
Step 5.2.4.4.5
Factor out of .
Step 5.2.4.4.6
Factor out of .
Step 5.2.4.4.7
Factor out of .
Step 5.3
Evaluate .
Tap for more steps...
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
Use the Binomial Theorem.
Step 5.3.3.2
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.3.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.3.1
Combine and .
Step 5.3.3.3.2
Rewrite using the commutative property of multiplication.
Step 5.3.3.3.3
Combine and .
Step 5.3.3.3.4
Multiply .
Tap for more steps...
Step 5.3.3.3.4.1
Combine and .
Step 5.3.3.3.4.2
Combine and .
Step 5.3.3.3.5
Move to the left of .
Step 5.3.3.3.6
Rewrite using the commutative property of multiplication.
Step 5.3.3.3.7
Combine and .
Step 5.3.3.3.8
Multiply .
Tap for more steps...
Step 5.3.3.3.8.1
Combine and .
Step 5.3.3.3.8.2
Combine and .
Step 5.3.3.3.9
Move to the left of .
Step 5.3.3.3.10
Combine and .
Step 5.3.3.3.11
Combine and .
Step 5.3.3.3.12
Multiply .
Tap for more steps...
Step 5.3.3.3.12.1
Multiply by .
Step 5.3.3.3.12.2
Combine and .
Step 5.3.3.3.12.3
Combine and .
Step 5.3.3.3.12.4
Combine and .
Step 5.3.3.3.13
Remove unnecessary parentheses.
Step 5.3.3.3.14
Move to the left of .
Step 5.3.3.3.15
Move the negative in front of the fraction.
Step 5.3.3.3.16
Multiply .
Tap for more steps...
Step 5.3.3.3.16.1
Multiply by .
Step 5.3.3.3.16.2
Combine and .
Step 5.3.3.3.16.3
Combine and .
Step 5.3.3.3.16.4
Combine and .
Step 5.3.3.3.17
Remove unnecessary parentheses.
Step 5.3.3.3.18
Move to the left of .
Step 5.3.3.3.19
Move the negative in front of the fraction.
Step 5.3.3.3.20
Combine and .
Step 5.3.4
Simplify the expression.
Tap for more steps...
Step 5.3.4.1
Reorder and .
Step 5.3.4.2
Move .
Step 5.3.4.3
Move .
Step 5.3.4.4
Reorder and .
Step 5.3.4.5
Move .
Step 5.3.4.6
Move .
Step 5.3.4.7
Reorder and .
Step 5.3.4.8
Reorder and .
Step 5.3.4.9
Reorder and .
Step 5.3.4.10
Reorder and .
Step 5.3.4.11
Reorder and .
Step 5.3.4.12
Move .
Step 5.3.4.13
Move .
Step 5.3.4.14
Reorder and .
Step 5.3.4.15
Move .
Step 5.3.4.16
Move .
Step 5.3.4.17
Reorder and .
Step 5.3.4.18
Reorder and .
Step 5.4
Since and , then is the inverse of .