Enter a problem...
Algebra Examples
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Apply the distributive property.
Step 1.1.2
Combine and .
Step 1.1.3
Combine and .
Step 2
Step 2.1
Multiply each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Move to the left of .
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Cancel the common factor of .
Step 2.3.1.1.1
Cancel the common factor.
Step 2.3.1.1.2
Rewrite the expression.
Step 2.3.1.2
Cancel the common factor of .
Step 2.3.1.2.1
Cancel the common factor.
Step 2.3.1.2.2
Rewrite the expression.
Step 2.3.1.3
Move to the left of .
Step 3
Step 3.1
Simplify by moving inside the logarithm.
Step 4
Step 4.1
Simplify .
Step 4.1.1
Use the product property of logarithms, .
Step 4.1.2
Simplify each term.
Step 4.1.2.1
Simplify by moving inside the logarithm.
Step 4.1.2.2
Raise to the power of .
Step 4.1.3
Use the product property of logarithms, .
Step 4.1.4
Move to the left of .
Step 5
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
Step 6
Step 6.1
Move all terms containing to the left side of the equation.
Step 6.1.1
Subtract from both sides of the equation.
Step 6.1.2
Simplify each term.
Step 6.1.2.1
Rewrite as .
Step 6.1.2.2
Expand using the FOIL Method.
Step 6.1.2.2.1
Apply the distributive property.
Step 6.1.2.2.2
Apply the distributive property.
Step 6.1.2.2.3
Apply the distributive property.
Step 6.1.2.3
Simplify and combine like terms.
Step 6.1.2.3.1
Simplify each term.
Step 6.1.2.3.1.1
Multiply by .
Step 6.1.2.3.1.2
Multiply by .
Step 6.1.2.3.2
Add and .
Step 6.1.2.3.2.1
Reorder and .
Step 6.1.2.3.2.2
Add and .
Step 6.1.3
Subtract from .
Step 6.2
Use the quadratic formula to find the solutions.
Step 6.3
Substitute the values , , and into the quadratic formula and solve for .
Step 6.4
Simplify.
Step 6.4.1
Simplify the numerator.
Step 6.4.1.1
Rewrite as .
Step 6.4.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 6.4.1.3
Simplify.
Step 6.4.1.3.1
Factor out of .
Step 6.4.1.3.1.1
Factor out of .
Step 6.4.1.3.1.2
Factor out of .
Step 6.4.1.3.1.3
Factor out of .
Step 6.4.1.3.2
Add and .
Step 6.4.1.3.3
Combine exponents.
Step 6.4.1.3.3.1
Multiply by .
Step 6.4.1.3.3.2
Multiply by .
Step 6.4.1.3.4
Factor out of .
Step 6.4.1.3.4.1
Factor out of .
Step 6.4.1.3.4.2
Factor out of .
Step 6.4.1.3.4.3
Factor out of .
Step 6.4.1.3.5
Multiply .
Step 6.4.1.3.5.1
Multiply by .
Step 6.4.1.3.5.2
Multiply by .
Step 6.4.1.3.6
Subtract from .
Step 6.4.1.3.7
Combine exponents.
Step 6.4.1.3.7.1
Multiply by .
Step 6.4.1.3.7.2
Multiply by .
Step 6.4.1.4
Rewrite as .
Step 6.4.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 6.4.1.6
plus or minus is .
Step 6.4.2
Multiply by .
Step 6.4.3
Cancel the common factor of .
Step 6.4.3.1
Cancel the common factor.
Step 6.4.3.2
Divide by .
Step 6.5
The final answer is the combination of both solutions.
Double roots
Double roots