Enter a problem...
Algebra Examples
Step 1
Combine and .
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply .
Step 2.2.1.1.3.1.1.1
Multiply by .
Step 2.2.1.1.3.1.1.2
Multiply by .
Step 2.2.1.1.3.1.1.3
Raise to the power of .
Step 2.2.1.1.3.1.1.4
Raise to the power of .
Step 2.2.1.1.3.1.1.5
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.1.6
Add and .
Step 2.2.1.1.3.1.1.7
Multiply by .
Step 2.2.1.1.3.1.2
Multiply .
Step 2.2.1.1.3.1.2.1
Multiply by .
Step 2.2.1.1.3.1.2.2
Multiply by .
Step 2.2.1.1.3.1.2.3
Multiply by .
Step 2.2.1.1.3.1.3
Multiply .
Step 2.2.1.1.3.1.3.1
Multiply by .
Step 2.2.1.1.3.1.3.2
Multiply by .
Step 2.2.1.1.3.1.3.3
Multiply by .
Step 2.2.1.1.3.1.4
Multiply .
Step 2.2.1.1.3.1.4.1
Multiply by .
Step 2.2.1.1.3.1.4.2
Multiply by .
Step 2.2.1.1.3.1.4.3
Multiply by .
Step 2.2.1.1.3.1.4.4
Multiply by .
Step 2.2.1.1.3.1.4.5
Multiply by .
Step 2.2.1.1.3.2
Subtract from .
Step 2.2.1.1.4
Simplify each term.
Step 2.2.1.1.4.1
Cancel the common factor of .
Step 2.2.1.1.4.1.1
Factor out of .
Step 2.2.1.1.4.1.2
Factor out of .
Step 2.2.1.1.4.1.3
Cancel the common factor.
Step 2.2.1.1.4.1.4
Rewrite the expression.
Step 2.2.1.1.4.2
Rewrite as .
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Simplify terms.
Step 2.2.1.3.1
Combine and .
Step 2.2.1.3.2
Combine the numerators over the common denominator.
Step 2.2.1.3.3
Combine the numerators over the common denominator.
Step 2.2.1.4
Move to the left of .
Step 2.2.1.5
Add and .
Step 2.2.1.6
Simplify each term.
Step 2.2.1.6.1
Factor out of .
Step 2.2.1.6.1.1
Factor out of .
Step 2.2.1.6.1.2
Factor out of .
Step 2.2.1.6.1.3
Factor out of .
Step 2.2.1.6.2
Move the negative in front of the fraction.
Step 2.2.1.7
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.8
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.2.1.8.1
Multiply by .
Step 2.2.1.8.2
Multiply by .
Step 2.2.1.9
Combine the numerators over the common denominator.
Step 2.2.1.10
Simplify the numerator.
Step 2.2.1.10.1
Factor out of .
Step 2.2.1.10.1.1
Factor out of .
Step 2.2.1.10.1.2
Factor out of .
Step 2.2.1.10.2
Multiply by .
Step 2.2.1.10.3
Reorder terms.
Step 3
Step 3.1
Multiply both sides by .
Step 3.2
Simplify.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Cancel the common factor of .
Step 3.2.1.1.1.1
Cancel the common factor.
Step 3.2.1.1.1.2
Rewrite the expression.
Step 3.2.1.1.2
Apply the distributive property.
Step 3.2.1.1.3
Simplify.
Step 3.2.1.1.3.1
Multiply by .
Step 3.2.1.1.3.2
Multiply by .
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Multiply by .
Step 3.3
Solve for .
Step 3.3.1
Subtract from both sides of the equation.
Step 3.3.2
Subtract from .
Step 3.3.3
Factor the left side of the equation.
Step 3.3.3.1
Factor out of .
Step 3.3.3.1.1
Factor out of .
Step 3.3.3.1.2
Factor out of .
Step 3.3.3.1.3
Factor out of .
Step 3.3.3.1.4
Factor out of .
Step 3.3.3.1.5
Factor out of .
Step 3.3.3.2
Factor using the perfect square rule.
Step 3.3.3.2.1
Rewrite as .
Step 3.3.3.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.3.3.2.3
Rewrite the polynomial.
Step 3.3.3.2.4
Factor using the perfect square trinomial rule , where and .
Step 3.3.4
Divide each term in by and simplify.
Step 3.3.4.1
Divide each term in by .
Step 3.3.4.2
Simplify the left side.
Step 3.3.4.2.1
Cancel the common factor of .
Step 3.3.4.2.1.1
Cancel the common factor.
Step 3.3.4.2.1.2
Divide by .
Step 3.3.4.3
Simplify the right side.
Step 3.3.4.3.1
Divide by .
Step 3.3.5
Set the equal to .
Step 3.3.6
Add to both sides of the equation.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Combine the numerators over the common denominator.
Step 4.2.1.2
Simplify the expression.
Step 4.2.1.2.1
Multiply by .
Step 4.2.1.2.2
Subtract from .
Step 4.2.1.2.3
Divide by .
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 6
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 7