Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Add to both sides of the equation.
Step 2.3
Combine and .
Step 2.4
Multiply both sides of the equation by .
Step 2.5
Simplify both sides of the equation.
Step 2.5.1
Simplify the left side.
Step 2.5.1.1
Cancel the common factor of .
Step 2.5.1.1.1
Cancel the common factor.
Step 2.5.1.1.2
Rewrite the expression.
Step 2.5.2
Simplify the right side.
Step 2.5.2.1
Simplify .
Step 2.5.2.1.1
Apply the distributive property.
Step 2.5.2.1.2
Multiply by .
Step 2.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.7
Simplify .
Step 2.7.1
Rewrite.
Step 2.7.2
Simplify by adding zeros.
Step 2.7.3
Factor out of .
Step 2.7.3.1
Factor out of .
Step 2.7.3.2
Factor out of .
Step 2.7.3.3
Factor out of .
Step 2.8
Subtract from both sides of the equation.
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Combine the opposite terms in .
Step 4.2.3.1
Add and .
Step 4.2.3.2
Add and .
Step 4.2.4
Simplify each term.
Step 4.2.4.1
Combine and .
Step 4.2.4.2
Combine and .
Step 4.2.4.3
Reduce the expression by cancelling the common factors.
Step 4.2.4.3.1
Reduce the expression by cancelling the common factors.
Step 4.2.4.3.1.1
Cancel the common factor.
Step 4.2.4.3.1.2
Rewrite the expression.
Step 4.2.4.3.2
Divide by .
Step 4.2.4.4
Pull terms out from under the radical, assuming real numbers.
Step 4.2.5
Combine the opposite terms in .
Step 4.2.5.1
Subtract from .
Step 4.2.5.2
Add and .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Combine the opposite terms in .
Step 4.3.3.1
Add and .
Step 4.3.3.2
Add and .
Step 4.3.4
Simplify each term.
Step 4.3.4.1
Rewrite as .
Step 4.3.4.1.1
Use to rewrite as .
Step 4.3.4.1.2
Apply the power rule and multiply exponents, .
Step 4.3.4.1.3
Combine and .
Step 4.3.4.1.4
Cancel the common factor of .
Step 4.3.4.1.4.1
Cancel the common factor.
Step 4.3.4.1.4.2
Rewrite the expression.
Step 4.3.4.1.5
Simplify.
Step 4.3.4.2
Cancel the common factor of .
Step 4.3.4.2.1
Cancel the common factor.
Step 4.3.4.2.2
Rewrite the expression.
Step 4.3.5
Combine the opposite terms in .
Step 4.3.5.1
Subtract from .
Step 4.3.5.2
Add and .
Step 4.4
Since and , then is the inverse of .