Enter a problem...
Algebra Examples
Step 1
Add to both sides of the equation.
Step 2
Step 2.1
Subtract from both sides of the equation.
Step 2.2
To write as a fraction with a common denominator, multiply by .
Step 2.3
To write as a fraction with a common denominator, multiply by .
Step 2.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.4.1
Multiply by .
Step 2.4.2
Multiply by .
Step 2.4.3
Reorder the factors of .
Step 2.5
Combine the numerators over the common denominator.
Step 2.6
Simplify the numerator.
Step 2.6.1
Rewrite as .
Step 2.6.2
Rewrite as .
Step 2.6.3
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.6.4
Simplify.
Step 2.6.4.1
Apply the distributive property.
Step 2.6.4.2
Apply the distributive property.
Step 2.6.4.3
Apply the distributive property.
Step 2.6.4.4
Apply the distributive property.
Step 2.6.4.5
Apply the distributive property.
Step 2.6.4.6
Multiply .
Step 2.6.4.6.1
Multiply by .
Step 2.6.4.6.2
Multiply by .
Step 3
Multiply both sides by .
Step 4
Step 4.1
Simplify the left side.
Step 4.1.1
Simplify .
Step 4.1.1.1
Cancel the common factor of .
Step 4.1.1.1.1
Cancel the common factor.
Step 4.1.1.1.2
Rewrite the expression.
Step 4.1.1.2
Expand by multiplying each term in the first expression by each term in the second expression.
Step 4.1.1.3
Simplify terms.
Step 4.1.1.3.1
Combine the opposite terms in .
Step 4.1.1.3.1.1
Reorder the factors in the terms and .
Step 4.1.1.3.1.2
Add and .
Step 4.1.1.3.1.3
Add and .
Step 4.1.1.3.1.4
Reorder the factors in the terms and .
Step 4.1.1.3.1.5
Subtract from .
Step 4.1.1.3.1.6
Add and .
Step 4.1.1.3.2
Simplify each term.
Step 4.1.1.3.2.1
Multiply by by adding the exponents.
Step 4.1.1.3.2.1.1
Move .
Step 4.1.1.3.2.1.2
Multiply by .
Step 4.1.1.3.2.2
Multiply by by adding the exponents.
Step 4.1.1.3.2.2.1
Move .
Step 4.1.1.3.2.2.2
Multiply by .
Step 4.1.1.3.2.3
Rewrite using the commutative property of multiplication.
Step 4.1.1.3.2.4
Multiply by by adding the exponents.
Step 4.1.1.3.2.4.1
Move .
Step 4.1.1.3.2.4.2
Multiply by .
Step 4.1.1.3.2.5
Multiply by by adding the exponents.
Step 4.1.1.3.2.5.1
Move .
Step 4.1.1.3.2.5.2
Multiply by .
Step 4.1.1.3.2.6
Multiply by by adding the exponents.
Step 4.1.1.3.2.6.1
Move .
Step 4.1.1.3.2.6.2
Multiply by .
Step 4.1.1.3.2.7
Multiply by by adding the exponents.
Step 4.1.1.3.2.7.1
Move .
Step 4.1.1.3.2.7.2
Multiply by .
Step 4.1.1.3.2.8
Multiply .
Step 4.1.1.3.2.8.1
Multiply by .
Step 4.1.1.3.2.8.2
Multiply by .
Step 4.1.1.3.2.9
Multiply .
Step 4.1.1.3.2.9.1
Multiply by .
Step 4.1.1.3.2.9.2
Multiply by .
Step 4.1.1.3.2.10
Rewrite using the commutative property of multiplication.
Step 4.1.1.3.2.11
Rewrite using the commutative property of multiplication.
Step 4.1.1.3.2.12
Multiply by by adding the exponents.
Step 4.1.1.3.2.12.1
Move .
Step 4.1.1.3.2.12.2
Multiply by .
Step 4.1.1.3.2.13
Multiply by by adding the exponents.
Step 4.1.1.3.2.13.1
Move .
Step 4.1.1.3.2.13.2
Multiply by .
Step 4.1.1.3.2.14
Multiply by by adding the exponents.
Step 4.1.1.3.2.14.1
Move .
Step 4.1.1.3.2.14.2
Multiply by .
Step 4.1.1.3.2.15
Multiply .
Step 4.1.1.3.2.15.1
Multiply by .
Step 4.1.1.3.2.15.2
Multiply by .
Step 4.1.1.3.2.16
Multiply by by adding the exponents.
Step 4.1.1.3.2.16.1
Move .
Step 4.1.1.3.2.16.2
Multiply by .
Step 4.1.1.3.2.17
Multiply .
Step 4.1.1.3.2.17.1
Multiply by .
Step 4.1.1.3.2.17.2
Multiply by .
Step 4.1.1.3.2.18
Multiply by by adding the exponents.
Step 4.1.1.3.2.18.1
Move .
Step 4.1.1.3.2.18.2
Multiply by .
Step 4.1.1.3.2.19
Multiply by by adding the exponents.
Step 4.1.1.3.2.19.1
Move .
Step 4.1.1.3.2.19.2
Multiply by .
Step 4.1.1.3.3
Simplify by adding terms.
Step 4.1.1.3.3.1
Combine the opposite terms in .
Step 4.1.1.3.3.1.1
Reorder the factors in the terms and .
Step 4.1.1.3.3.1.2
Subtract from .
Step 4.1.1.3.3.1.3
Add and .
Step 4.1.1.3.3.1.4
Reorder the factors in the terms and .
Step 4.1.1.3.3.1.5
Add and .
Step 4.1.1.3.3.1.6
Add and .
Step 4.1.1.3.3.2
Simplify the expression.
Step 4.1.1.3.3.2.1
Move .
Step 4.1.1.3.3.2.2
Rewrite as .
Step 4.1.1.3.3.3
Subtract from .
Step 4.1.1.3.3.4
Reorder and .
Step 4.1.1.3.3.5
Add and .
Step 4.1.1.3.3.6
Simplify the expression.
Step 4.1.1.3.3.6.1
Reorder and .
Step 4.1.1.3.3.6.2
Reorder and .
Step 4.1.1.3.3.6.3
Move .
Step 4.1.1.3.3.6.4
Move .
Step 4.1.1.3.3.6.5
Move .
Step 4.1.1.3.3.6.6
Move .
Step 4.1.1.3.3.6.7
Move .
Step 4.1.1.3.3.6.8
Move .
Step 4.1.1.3.3.6.9
Reorder and .
Step 4.2
Simplify the right side.
Step 4.2.1
Multiply by .
Step 5
Step 5.1
Rewrite as .
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Use the quadratic formula to find the solutions.
Step 5.4
Substitute the values , , and into the quadratic formula and solve for .
Step 5.5
Simplify.
Step 5.5.1
Simplify the numerator.
Step 5.5.1.1
Rewrite as .
Step 5.5.1.2
Let . Substitute for all occurrences of .
Step 5.5.1.2.1
Use the power rule to distribute the exponent.
Step 5.5.1.2.1.1
Apply the product rule to .
Step 5.5.1.2.1.2
Apply the product rule to .
Step 5.5.1.2.2
Raise to the power of .
Step 5.5.1.2.3
Multiply the exponents in .
Step 5.5.1.2.3.1
Apply the power rule and multiply exponents, .
Step 5.5.1.2.3.2
Multiply by .
Step 5.5.1.3
Factor out of .
Step 5.5.1.3.1
Factor out of .
Step 5.5.1.3.2
Factor out of .
Step 5.5.1.3.3
Factor out of .
Step 5.5.1.4
Replace all occurrences of with .
Step 5.5.1.5
Simplify.
Step 5.5.1.5.1
Simplify each term.
Step 5.5.1.5.1.1
Simplify each term.
Step 5.5.1.5.1.1.1
Apply the product rule to .
Step 5.5.1.5.1.1.2
Apply the product rule to .
Step 5.5.1.5.1.1.3
Apply the product rule to .
Step 5.5.1.5.1.1.4
Apply the product rule to .
Step 5.5.1.5.1.2
Apply the distributive property.
Step 5.5.1.5.1.3
Simplify.
Step 5.5.1.5.1.3.1
Rewrite using the commutative property of multiplication.
Step 5.5.1.5.1.3.2
Rewrite using the commutative property of multiplication.
Step 5.5.1.5.1.3.3
Rewrite using the commutative property of multiplication.
Step 5.5.1.5.1.3.4
Multiply by by adding the exponents.
Step 5.5.1.5.1.3.4.1
Move .
Step 5.5.1.5.1.3.4.2
Use the power rule to combine exponents.
Step 5.5.1.5.1.3.4.3
Add and .
Step 5.5.1.5.1.3.5
Rewrite using the commutative property of multiplication.
Step 5.5.1.5.1.4
Multiply by by adding the exponents.
Step 5.5.1.5.1.4.1
Move .
Step 5.5.1.5.1.4.2
Use the power rule to combine exponents.
Step 5.5.1.5.1.4.3
Add and .
Step 5.5.1.5.1.5
Apply the distributive property.
Step 5.5.1.5.1.6
Simplify.
Step 5.5.1.5.1.6.1
Multiply .
Step 5.5.1.5.1.6.1.1
Multiply by .
Step 5.5.1.5.1.6.1.2
Multiply by .
Step 5.5.1.5.1.6.2
Multiply by .
Step 5.5.1.5.1.6.3
Multiply .
Step 5.5.1.5.1.6.3.1
Multiply by .
Step 5.5.1.5.1.6.3.2
Multiply by .
Step 5.5.1.5.1.6.4
Multiply .
Step 5.5.1.5.1.6.4.1
Multiply by .
Step 5.5.1.5.1.6.4.2
Multiply by .
Step 5.5.1.5.1.7
Remove parentheses.
Step 5.5.1.5.2
Combine the opposite terms in .
Step 5.5.1.5.2.1
Subtract from .
Step 5.5.1.5.2.2
Add and .
Step 5.5.1.6
Factor out of .
Step 5.5.1.6.1
Factor out of .
Step 5.5.1.6.2
Factor out of .
Step 5.5.1.6.3
Factor out of .
Step 5.5.1.6.4
Factor out of .
Step 5.5.1.6.5
Factor out of .
Step 5.5.1.6.6
Factor out of .
Step 5.5.1.6.7
Factor out of .
Step 5.5.1.7
Rewrite as .
Step 5.5.1.7.1
Rewrite as .
Step 5.5.1.7.2
Rewrite as .
Step 5.5.1.8
Pull terms out from under the radical.
Step 5.5.2
Simplify .
Step 5.6
Simplify the expression to solve for the portion of the .
Step 5.6.1
Simplify the numerator.
Step 5.6.1.1
Rewrite as .
Step 5.6.1.2
Let . Substitute for all occurrences of .
Step 5.6.1.2.1
Use the power rule to distribute the exponent.
Step 5.6.1.2.1.1
Apply the product rule to .
Step 5.6.1.2.1.2
Apply the product rule to .
Step 5.6.1.2.2
Raise to the power of .
Step 5.6.1.2.3
Multiply the exponents in .
Step 5.6.1.2.3.1
Apply the power rule and multiply exponents, .
Step 5.6.1.2.3.2
Multiply by .
Step 5.6.1.3
Factor out of .
Step 5.6.1.3.1
Factor out of .
Step 5.6.1.3.2
Factor out of .
Step 5.6.1.3.3
Factor out of .
Step 5.6.1.4
Replace all occurrences of with .
Step 5.6.1.5
Simplify.
Step 5.6.1.5.1
Simplify each term.
Step 5.6.1.5.1.1
Simplify each term.
Step 5.6.1.5.1.1.1
Apply the product rule to .
Step 5.6.1.5.1.1.2
Apply the product rule to .
Step 5.6.1.5.1.1.3
Apply the product rule to .
Step 5.6.1.5.1.1.4
Apply the product rule to .
Step 5.6.1.5.1.2
Apply the distributive property.
Step 5.6.1.5.1.3
Simplify.
Step 5.6.1.5.1.3.1
Rewrite using the commutative property of multiplication.
Step 5.6.1.5.1.3.2
Rewrite using the commutative property of multiplication.
Step 5.6.1.5.1.3.3
Rewrite using the commutative property of multiplication.
Step 5.6.1.5.1.3.4
Multiply by by adding the exponents.
Step 5.6.1.5.1.3.4.1
Move .
Step 5.6.1.5.1.3.4.2
Use the power rule to combine exponents.
Step 5.6.1.5.1.3.4.3
Add and .
Step 5.6.1.5.1.3.5
Rewrite using the commutative property of multiplication.
Step 5.6.1.5.1.4
Multiply by by adding the exponents.
Step 5.6.1.5.1.4.1
Move .
Step 5.6.1.5.1.4.2
Use the power rule to combine exponents.
Step 5.6.1.5.1.4.3
Add and .
Step 5.6.1.5.1.5
Apply the distributive property.
Step 5.6.1.5.1.6
Simplify.
Step 5.6.1.5.1.6.1
Multiply .
Step 5.6.1.5.1.6.1.1
Multiply by .
Step 5.6.1.5.1.6.1.2
Multiply by .
Step 5.6.1.5.1.6.2
Multiply by .
Step 5.6.1.5.1.6.3
Multiply .
Step 5.6.1.5.1.6.3.1
Multiply by .
Step 5.6.1.5.1.6.3.2
Multiply by .
Step 5.6.1.5.1.6.4
Multiply .
Step 5.6.1.5.1.6.4.1
Multiply by .
Step 5.6.1.5.1.6.4.2
Multiply by .
Step 5.6.1.5.1.7
Remove parentheses.
Step 5.6.1.5.2
Combine the opposite terms in .
Step 5.6.1.5.2.1
Subtract from .
Step 5.6.1.5.2.2
Add and .
Step 5.6.1.6
Factor out of .
Step 5.6.1.6.1
Factor out of .
Step 5.6.1.6.2
Factor out of .
Step 5.6.1.6.3
Factor out of .
Step 5.6.1.6.4
Factor out of .
Step 5.6.1.6.5
Factor out of .
Step 5.6.1.6.6
Factor out of .
Step 5.6.1.6.7
Factor out of .
Step 5.6.1.7
Rewrite as .
Step 5.6.1.7.1
Rewrite as .
Step 5.6.1.7.2
Rewrite as .
Step 5.6.1.8
Pull terms out from under the radical.
Step 5.6.2
Simplify .
Step 5.6.3
Change the to .
Step 5.7
Simplify the expression to solve for the portion of the .
Step 5.7.1
Simplify the numerator.
Step 5.7.1.1
Rewrite as .
Step 5.7.1.2
Let . Substitute for all occurrences of .
Step 5.7.1.2.1
Use the power rule to distribute the exponent.
Step 5.7.1.2.1.1
Apply the product rule to .
Step 5.7.1.2.1.2
Apply the product rule to .
Step 5.7.1.2.2
Raise to the power of .
Step 5.7.1.2.3
Multiply the exponents in .
Step 5.7.1.2.3.1
Apply the power rule and multiply exponents, .
Step 5.7.1.2.3.2
Multiply by .
Step 5.7.1.3
Factor out of .
Step 5.7.1.3.1
Factor out of .
Step 5.7.1.3.2
Factor out of .
Step 5.7.1.3.3
Factor out of .
Step 5.7.1.4
Replace all occurrences of with .
Step 5.7.1.5
Simplify.
Step 5.7.1.5.1
Simplify each term.
Step 5.7.1.5.1.1
Simplify each term.
Step 5.7.1.5.1.1.1
Apply the product rule to .
Step 5.7.1.5.1.1.2
Apply the product rule to .
Step 5.7.1.5.1.1.3
Apply the product rule to .
Step 5.7.1.5.1.1.4
Apply the product rule to .
Step 5.7.1.5.1.2
Apply the distributive property.
Step 5.7.1.5.1.3
Simplify.
Step 5.7.1.5.1.3.1
Rewrite using the commutative property of multiplication.
Step 5.7.1.5.1.3.2
Rewrite using the commutative property of multiplication.
Step 5.7.1.5.1.3.3
Rewrite using the commutative property of multiplication.
Step 5.7.1.5.1.3.4
Multiply by by adding the exponents.
Step 5.7.1.5.1.3.4.1
Move .
Step 5.7.1.5.1.3.4.2
Use the power rule to combine exponents.
Step 5.7.1.5.1.3.4.3
Add and .
Step 5.7.1.5.1.3.5
Rewrite using the commutative property of multiplication.
Step 5.7.1.5.1.4
Multiply by by adding the exponents.
Step 5.7.1.5.1.4.1
Move .
Step 5.7.1.5.1.4.2
Use the power rule to combine exponents.
Step 5.7.1.5.1.4.3
Add and .
Step 5.7.1.5.1.5
Apply the distributive property.
Step 5.7.1.5.1.6
Simplify.
Step 5.7.1.5.1.6.1
Multiply .
Step 5.7.1.5.1.6.1.1
Multiply by .
Step 5.7.1.5.1.6.1.2
Multiply by .
Step 5.7.1.5.1.6.2
Multiply by .
Step 5.7.1.5.1.6.3
Multiply .
Step 5.7.1.5.1.6.3.1
Multiply by .
Step 5.7.1.5.1.6.3.2
Multiply by .
Step 5.7.1.5.1.6.4
Multiply .
Step 5.7.1.5.1.6.4.1
Multiply by .
Step 5.7.1.5.1.6.4.2
Multiply by .
Step 5.7.1.5.1.7
Remove parentheses.
Step 5.7.1.5.2
Combine the opposite terms in .
Step 5.7.1.5.2.1
Subtract from .
Step 5.7.1.5.2.2
Add and .
Step 5.7.1.6
Factor out of .
Step 5.7.1.6.1
Factor out of .
Step 5.7.1.6.2
Factor out of .
Step 5.7.1.6.3
Factor out of .
Step 5.7.1.6.4
Factor out of .
Step 5.7.1.6.5
Factor out of .
Step 5.7.1.6.6
Factor out of .
Step 5.7.1.6.7
Factor out of .
Step 5.7.1.7
Rewrite as .
Step 5.7.1.7.1
Rewrite as .
Step 5.7.1.7.2
Rewrite as .
Step 5.7.1.8
Pull terms out from under the radical.
Step 5.7.2
Simplify .
Step 5.7.3
Change the to .
Step 5.8
The final answer is the combination of both solutions.