Algebra Examples

Divide (x^5-10x^2-8)÷(x-2)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-++-+-
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
-++-+-
Step 3
Multiply the new quotient term by the divisor.
-++-+-
+-
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
-++-+-
-+
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++-+-
-+
+
Step 6
Pull the next terms from the original dividend down into the current dividend.
-++-+-
-+
++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
+
-++-+-
-+
++
Step 8
Multiply the new quotient term by the divisor.
+
-++-+-
-+
++
+-
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
+
-++-+-
-+
++
-+
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
-++-+-
-+
++
-+
+
Step 11
Pull the next terms from the original dividend down into the current dividend.
+
-++-+-
-+
++
-+
+-
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
++
-++-+-
-+
++
-+
+-
Step 13
Multiply the new quotient term by the divisor.
++
-++-+-
-+
++
-+
+-
+-
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
++
-++-+-
-+
++
-+
+-
-+
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++
-++-+-
-+
++
-+
+-
-+
-
Step 16
Pull the next terms from the original dividend down into the current dividend.
++
-++-+-
-+
++
-+
+-
-+
-+
Step 17
Divide the highest order term in the dividend by the highest order term in divisor .
++-
-++-+-
-+
++
-+
+-
-+
-+
Step 18
Multiply the new quotient term by the divisor.
++-
-++-+-
-+
++
-+
+-
-+
-+
-+
Step 19
The expression needs to be subtracted from the dividend, so change all the signs in
++-
-++-+-
-+
++
-+
+-
-+
-+
+-
Step 20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++-
-++-+-
-+
++
-+
+-
-+
-+
+-
-
Step 21
Pull the next terms from the original dividend down into the current dividend.
++-
-++-+-
-+
++
-+
+-
-+
-+
+-
--
Step 22
Divide the highest order term in the dividend by the highest order term in divisor .
++--
-++-+-
-+
++
-+
+-
-+
-+
+-
--
Step 23
Multiply the new quotient term by the divisor.
++--
-++-+-
-+
++
-+
+-
-+
-+
+-
--
-+
Step 24
The expression needs to be subtracted from the dividend, so change all the signs in
++--
-++-+-
-+
++
-+
+-
-+
-+
+-
--
+-
Step 25
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++--
-++-+-
-+
++
-+
+-
-+
-+
+-
--
+-
-
Step 26
The final answer is the quotient plus the remainder over the divisor.