Enter a problem...
Algebra Examples
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply .
Step 2.2.1.1.3.1.1.1
Multiply by .
Step 2.2.1.1.3.1.1.2
Multiply by .
Step 2.2.1.1.3.1.1.3
Multiply by .
Step 2.2.1.1.3.1.2
Multiply .
Step 2.2.1.1.3.1.2.1
Multiply by .
Step 2.2.1.1.3.1.2.2
Multiply by .
Step 2.2.1.1.3.1.2.3
Multiply by .
Step 2.2.1.1.3.1.3
Multiply .
Step 2.2.1.1.3.1.3.1
Multiply by .
Step 2.2.1.1.3.1.3.2
Multiply by .
Step 2.2.1.1.3.1.3.3
Multiply by .
Step 2.2.1.1.3.1.4
Multiply .
Step 2.2.1.1.3.1.4.1
Multiply by .
Step 2.2.1.1.3.1.4.2
Multiply by .
Step 2.2.1.1.3.1.4.3
Raise to the power of .
Step 2.2.1.1.3.1.4.4
Raise to the power of .
Step 2.2.1.1.3.1.4.5
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.4.6
Add and .
Step 2.2.1.1.3.1.4.7
Multiply by .
Step 2.2.1.1.3.2
Add and .
Step 2.2.1.1.4
Multiply .
Step 2.2.1.1.4.1
Combine and .
Step 2.2.1.1.4.2
Multiply by .
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Simplify terms.
Step 2.2.1.3.1
Combine and .
Step 2.2.1.3.2
Combine the numerators over the common denominator.
Step 2.2.1.3.3
Combine the numerators over the common denominator.
Step 2.2.1.4
Move to the left of .
Step 2.2.1.5
Simplify terms.
Step 2.2.1.5.1
Add and .
Step 2.2.1.5.2
Factor out of .
Step 2.2.1.5.2.1
Factor out of .
Step 2.2.1.5.2.2
Factor out of .
Step 2.2.1.5.2.3
Factor out of .
Step 2.2.1.5.2.4
Factor out of .
Step 2.2.1.5.2.5
Factor out of .
Step 3
Step 3.1
Multiply both sides by .
Step 3.2
Simplify.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Cancel the common factor of .
Step 3.2.1.1.1.1
Cancel the common factor.
Step 3.2.1.1.1.2
Rewrite the expression.
Step 3.2.1.1.2
Apply the distributive property.
Step 3.2.1.1.3
Simplify.
Step 3.2.1.1.3.1
Multiply by .
Step 3.2.1.1.3.2
Multiply by .
Step 3.2.1.1.3.3
Multiply by .
Step 3.2.1.1.4
Move .
Step 3.2.1.1.5
Reorder and .
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Multiply by .
Step 3.3
Solve for .
Step 3.3.1
Subtract from both sides of the equation.
Step 3.3.2
Subtract from .
Step 3.3.3
Factor using the perfect square rule.
Step 3.3.3.1
Rewrite as .
Step 3.3.3.2
Rewrite as .
Step 3.3.3.3
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.3.3.4
Rewrite the polynomial.
Step 3.3.3.5
Factor using the perfect square trinomial rule , where and .
Step 3.3.4
Set the equal to .
Step 3.3.5
Solve for .
Step 3.3.5.1
Subtract from both sides of the equation.
Step 3.3.5.2
Divide each term in by and simplify.
Step 3.3.5.2.1
Divide each term in by .
Step 3.3.5.2.2
Simplify the left side.
Step 3.3.5.2.2.1
Cancel the common factor of .
Step 3.3.5.2.2.1.1
Cancel the common factor.
Step 3.3.5.2.2.1.2
Divide by .
Step 3.3.5.2.3
Simplify the right side.
Step 3.3.5.2.3.1
Move the negative in front of the fraction.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Combine the numerators over the common denominator.
Step 4.2.1.2
Simplify each term.
Step 4.2.1.2.1
Multiply .
Step 4.2.1.2.1.1
Multiply by .
Step 4.2.1.2.1.2
Combine and .
Step 4.2.1.2.1.3
Multiply by .
Step 4.2.1.2.2
Move the negative in front of the fraction.
Step 4.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.4
Combine and .
Step 4.2.1.5
Combine the numerators over the common denominator.
Step 4.2.1.6
Simplify the numerator.
Step 4.2.1.6.1
Multiply by .
Step 4.2.1.6.2
Subtract from .
Step 4.2.1.7
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.1.8
Cancel the common factor of .
Step 4.2.1.8.1
Factor out of .
Step 4.2.1.8.2
Cancel the common factor.
Step 4.2.1.8.3
Rewrite the expression.
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 6
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 7