Algebra Examples

Solve for x 1/( square root of x+5) = square root of -2x
Step 1
Cross multiply.
Tap for more steps...
Step 1.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Combine using the product rule for radicals.
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3
Simplify each side of the equation.
Tap for more steps...
Step 3.1
Use to rewrite as .
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Simplify .
Tap for more steps...
Step 3.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.1.2
Apply the distributive property.
Step 3.2.1.3
Multiply by by adding the exponents.
Tap for more steps...
Step 3.2.1.3.1
Move .
Step 3.2.1.3.2
Multiply by .
Step 3.2.1.4
Multiply by .
Step 3.2.1.5
Simplify.
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
One to any power is one.
Step 4
Solve for .
Tap for more steps...
Step 4.1
Subtract from both sides of the equation.
Step 4.2
Use the quadratic formula to find the solutions.
Step 4.3
Substitute the values , , and into the quadratic formula and solve for .
Step 4.4
Simplify.
Tap for more steps...
Step 4.4.1
Simplify the numerator.
Tap for more steps...
Step 4.4.1.1
Raise to the power of .
Step 4.4.1.2
Multiply .
Tap for more steps...
Step 4.4.1.2.1
Multiply by .
Step 4.4.1.2.2
Multiply by .
Step 4.4.1.3
Subtract from .
Step 4.4.1.4
Rewrite as .
Tap for more steps...
Step 4.4.1.4.1
Factor out of .
Step 4.4.1.4.2
Rewrite as .
Step 4.4.1.5
Pull terms out from under the radical.
Step 4.4.2
Multiply by .
Step 4.4.3
Simplify .
Step 4.4.4
Move the negative in front of the fraction.
Step 4.5
The final answer is the combination of both solutions.
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form: