Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Combine and .
Step 3.4
Multiply both sides of the equation by .
Step 3.5
Simplify both sides of the equation.
Step 3.5.1
Simplify the left side.
Step 3.5.1.1
Simplify .
Step 3.5.1.1.1
Cancel the common factor of .
Step 3.5.1.1.1.1
Move the leading negative in into the numerator.
Step 3.5.1.1.1.2
Factor out of .
Step 3.5.1.1.1.3
Cancel the common factor.
Step 3.5.1.1.1.4
Rewrite the expression.
Step 3.5.1.1.2
Multiply.
Step 3.5.1.1.2.1
Multiply by .
Step 3.5.1.1.2.2
Multiply by .
Step 3.5.2
Simplify the right side.
Step 3.5.2.1
Simplify .
Step 3.5.2.1.1
Apply the distributive property.
Step 3.5.2.1.2
Multiply by .
Step 3.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.7
Simplify .
Step 3.7.1
Rewrite.
Step 3.7.2
Simplify by adding zeros.
Step 3.7.3
Factor out of .
Step 3.7.3.1
Factor out of .
Step 3.7.3.2
Factor out of .
Step 3.7.3.3
Factor out of .
Step 3.8
Add to both sides of the equation.
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Simplify each term.
Step 5.2.3.1.1
Use the Binomial Theorem.
Step 5.2.3.1.2
Simplify each term.
Step 5.2.3.1.2.1
Multiply by .
Step 5.2.3.1.2.2
Raise to the power of .
Step 5.2.3.1.2.3
Multiply by .
Step 5.2.3.1.2.4
Raise to the power of .
Step 5.2.3.1.3
Apply the distributive property.
Step 5.2.3.1.4
Simplify.
Step 5.2.3.1.4.1
Combine and .
Step 5.2.3.1.4.2
Multiply .
Step 5.2.3.1.4.2.1
Multiply by .
Step 5.2.3.1.4.2.2
Combine and .
Step 5.2.3.1.4.2.3
Combine and .
Step 5.2.3.1.4.3
Multiply .
Step 5.2.3.1.4.3.1
Multiply by .
Step 5.2.3.1.4.3.2
Combine and .
Step 5.2.3.1.4.3.3
Combine and .
Step 5.2.3.1.4.4
Multiply .
Step 5.2.3.1.4.4.1
Multiply by .
Step 5.2.3.1.4.4.2
Multiply by .
Step 5.2.3.1.5
Move the negative in front of the fraction.
Step 5.2.3.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.3.3
Combine and .
Step 5.2.3.4
Combine the numerators over the common denominator.
Step 5.2.3.5
Simplify the numerator.
Step 5.2.3.5.1
Multiply by .
Step 5.2.3.5.2
Add and .
Step 5.2.3.6
Apply the distributive property.
Step 5.2.3.7
Simplify.
Step 5.2.3.7.1
Multiply .
Step 5.2.3.7.1.1
Multiply by .
Step 5.2.3.7.1.2
Multiply by .
Step 5.2.3.7.2
Multiply .
Step 5.2.3.7.2.1
Multiply by .
Step 5.2.3.7.2.2
Multiply by .
Step 5.2.3.8
To write as a fraction with a common denominator, multiply by .
Step 5.2.3.9
Combine and .
Step 5.2.3.10
Combine the numerators over the common denominator.
Step 5.2.3.11
Simplify the numerator.
Step 5.2.3.11.1
Multiply by .
Step 5.2.3.11.2
Add and .
Step 5.2.3.12
Combine the numerators over the common denominator.
Step 5.2.3.13
Combine and .
Step 5.2.3.14
Reduce the expression by cancelling the common factors.
Step 5.2.3.14.1
Reduce the expression by cancelling the common factors.
Step 5.2.3.14.1.1
Cancel the common factor.
Step 5.2.3.14.1.2
Rewrite the expression.
Step 5.2.3.14.2
Divide by .
Step 5.2.3.15
Factor using the binomial theorem.
Step 5.2.3.16
Pull terms out from under the radical, assuming real numbers.
Step 5.2.4
Combine the opposite terms in .
Step 5.2.4.1
Add and .
Step 5.2.4.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Combine the opposite terms in .
Step 5.3.3.1
Subtract from .
Step 5.3.3.2
Add and .
Step 5.3.4
Simplify each term.
Step 5.3.4.1
Rewrite as .
Step 5.3.4.1.1
Use to rewrite as .
Step 5.3.4.1.2
Apply the power rule and multiply exponents, .
Step 5.3.4.1.3
Combine and .
Step 5.3.4.1.4
Cancel the common factor of .
Step 5.3.4.1.4.1
Cancel the common factor.
Step 5.3.4.1.4.2
Rewrite the expression.
Step 5.3.4.1.5
Simplify.
Step 5.3.4.2
Cancel the common factor of .
Step 5.3.4.2.1
Move the leading negative in into the numerator.
Step 5.3.4.2.2
Cancel the common factor.
Step 5.3.4.2.3
Rewrite the expression.
Step 5.3.4.3
Apply the distributive property.
Step 5.3.4.4
Multiply .
Step 5.3.4.4.1
Multiply by .
Step 5.3.4.4.2
Multiply by .
Step 5.3.4.5
Multiply by .
Step 5.3.5
Combine the opposite terms in .
Step 5.3.5.1
Add and .
Step 5.3.5.2
Add and .
Step 5.4
Since and , then is the inverse of .