Algebra Examples

Write in Standard Form 2x-y^2=4y+10
Step 1
Solve for .
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from both sides of the equation.
Step 1.3
Use the quadratic formula to find the solutions.
Step 1.4
Substitute the values , , and into the quadratic formula and solve for .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Simplify the numerator.
Tap for more steps...
Step 1.5.1.1
Factor out of .
Tap for more steps...
Step 1.5.1.1.1
Factor out of .
Step 1.5.1.1.2
Factor out of .
Step 1.5.1.1.3
Factor out of .
Step 1.5.1.2
Factor out of .
Tap for more steps...
Step 1.5.1.2.1
Reorder and .
Step 1.5.1.2.2
Rewrite as .
Step 1.5.1.2.3
Factor out of .
Step 1.5.1.2.4
Rewrite as .
Step 1.5.1.3
Add and .
Step 1.5.1.4
Factor out of .
Tap for more steps...
Step 1.5.1.4.1
Factor out of .
Step 1.5.1.4.2
Factor out of .
Step 1.5.1.4.3
Factor out of .
Step 1.5.1.5
Multiply by .
Step 1.5.1.6
Multiply by .
Step 1.5.1.7
Rewrite as .
Tap for more steps...
Step 1.5.1.7.1
Factor out of .
Step 1.5.1.7.2
Rewrite as .
Step 1.5.1.7.3
Add parentheses.
Step 1.5.1.8
Pull terms out from under the radical.
Step 1.5.2
Multiply by .
Step 1.5.3
Simplify .
Step 1.5.4
Move the negative one from the denominator of .
Step 1.5.5
Rewrite as .
Step 1.6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.6.1
Simplify the numerator.
Tap for more steps...
Step 1.6.1.1
Factor out of .
Tap for more steps...
Step 1.6.1.1.1
Factor out of .
Step 1.6.1.1.2
Factor out of .
Step 1.6.1.1.3
Factor out of .
Step 1.6.1.2
Factor out of .
Tap for more steps...
Step 1.6.1.2.1
Reorder and .
Step 1.6.1.2.2
Rewrite as .
Step 1.6.1.2.3
Factor out of .
Step 1.6.1.2.4
Rewrite as .
Step 1.6.1.3
Add and .
Step 1.6.1.4
Factor out of .
Tap for more steps...
Step 1.6.1.4.1
Factor out of .
Step 1.6.1.4.2
Factor out of .
Step 1.6.1.4.3
Factor out of .
Step 1.6.1.5
Multiply by .
Step 1.6.1.6
Multiply by .
Step 1.6.1.7
Rewrite as .
Tap for more steps...
Step 1.6.1.7.1
Factor out of .
Step 1.6.1.7.2
Rewrite as .
Step 1.6.1.7.3
Add parentheses.
Step 1.6.1.8
Pull terms out from under the radical.
Step 1.6.2
Multiply by .
Step 1.6.3
Simplify .
Step 1.6.4
Move the negative one from the denominator of .
Step 1.6.5
Rewrite as .
Step 1.6.6
Change the to .
Step 1.6.7
Apply the distributive property.
Step 1.6.8
Multiply by .
Step 1.7
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.7.1
Simplify the numerator.
Tap for more steps...
Step 1.7.1.1
Factor out of .
Tap for more steps...
Step 1.7.1.1.1
Factor out of .
Step 1.7.1.1.2
Factor out of .
Step 1.7.1.1.3
Factor out of .
Step 1.7.1.2
Factor out of .
Tap for more steps...
Step 1.7.1.2.1
Reorder and .
Step 1.7.1.2.2
Rewrite as .
Step 1.7.1.2.3
Factor out of .
Step 1.7.1.2.4
Rewrite as .
Step 1.7.1.3
Add and .
Step 1.7.1.4
Factor out of .
Tap for more steps...
Step 1.7.1.4.1
Factor out of .
Step 1.7.1.4.2
Factor out of .
Step 1.7.1.4.3
Factor out of .
Step 1.7.1.5
Multiply by .
Step 1.7.1.6
Multiply by .
Step 1.7.1.7
Rewrite as .
Tap for more steps...
Step 1.7.1.7.1
Factor out of .
Step 1.7.1.7.2
Rewrite as .
Step 1.7.1.7.3
Add parentheses.
Step 1.7.1.8
Pull terms out from under the radical.
Step 1.7.2
Multiply by .
Step 1.7.3
Simplify .
Step 1.7.4
Move the negative one from the denominator of .
Step 1.7.5
Rewrite as .
Step 1.7.6
Change the to .
Step 1.7.7
Apply the distributive property.
Step 1.7.8
Multiply by .
Step 1.7.9
Multiply .
Tap for more steps...
Step 1.7.9.1
Multiply by .
Step 1.7.9.2
Multiply by .
Step 1.8
The final answer is the combination of both solutions.
Step 2
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
Step 3
The standard form is .
Step 4