Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Apply the distributive property.
Step 2.2.1.2
Multiply.
Step 2.2.1.2.1
Multiply by .
Step 2.2.1.2.2
Multiply by .
Step 3
Step 3.1
Move all terms containing to the left side of the equation.
Step 3.1.1
Add to both sides of the equation.
Step 3.1.2
Add and .
Step 3.2
Divide each term in by and simplify.
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of .
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Step 3.4.1
Rewrite as .
Step 3.4.2
Simplify the numerator.
Step 3.4.2.1
Rewrite as .
Step 3.4.2.1.1
Factor out of .
Step 3.4.2.1.2
Rewrite as .
Step 3.4.2.2
Pull terms out from under the radical.
Step 3.4.3
Multiply by .
Step 3.4.4
Combine and simplify the denominator.
Step 3.4.4.1
Multiply by .
Step 3.4.4.2
Raise to the power of .
Step 3.4.4.3
Raise to the power of .
Step 3.4.4.4
Use the power rule to combine exponents.
Step 3.4.4.5
Add and .
Step 3.4.4.6
Rewrite as .
Step 3.4.4.6.1
Use to rewrite as .
Step 3.4.4.6.2
Apply the power rule and multiply exponents, .
Step 3.4.4.6.3
Combine and .
Step 3.4.4.6.4
Cancel the common factor of .
Step 3.4.4.6.4.1
Cancel the common factor.
Step 3.4.4.6.4.2
Rewrite the expression.
Step 3.4.4.6.5
Evaluate the exponent.
Step 3.4.5
Simplify the numerator.
Step 3.4.5.1
Combine using the product rule for radicals.
Step 3.4.5.2
Multiply by .
Step 3.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.5.1
First, use the positive value of the to find the first solution.
Step 3.5.2
Next, use the negative value of the to find the second solution.
Step 3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Step 4.1
Replace all occurrences of with in each equation.
Step 4.1.1
Replace all occurrences of in with .
Step 4.1.2
Simplify .
Step 4.1.2.1
Simplify the left side.
Step 4.1.2.1.1
Simplify .
Step 4.1.2.1.1.1
Rewrite as .
Step 4.1.2.1.1.2
Expand using the FOIL Method.
Step 4.1.2.1.1.2.1
Apply the distributive property.
Step 4.1.2.1.1.2.2
Apply the distributive property.
Step 4.1.2.1.1.2.3
Apply the distributive property.
Step 4.1.2.1.1.3
Simplify and combine like terms.
Step 4.1.2.1.1.3.1
Simplify each term.
Step 4.1.2.1.1.3.1.1
Multiply by .
Step 4.1.2.1.1.3.1.2
Move to the left of .
Step 4.1.2.1.1.3.1.3
Multiply by .
Step 4.1.2.1.1.3.2
Subtract from .
Step 4.1.2.1.1.4
Apply the distributive property.
Step 4.1.2.1.1.5
Simplify.
Step 4.1.2.1.1.5.1
Multiply by .
Step 4.1.2.1.1.5.2
Multiply by .
Step 4.1.2.2
Simplify the right side.
Step 4.1.2.2.1
Simplify .
Step 4.1.2.2.1.1
Simplify each term.
Step 4.1.2.2.1.1.1
Use the power rule to distribute the exponent.
Step 4.1.2.2.1.1.1.1
Apply the product rule to .
Step 4.1.2.2.1.1.1.2
Apply the product rule to .
Step 4.1.2.2.1.1.2
Simplify the numerator.
Step 4.1.2.2.1.1.2.1
Raise to the power of .
Step 4.1.2.2.1.1.2.2
Rewrite as .
Step 4.1.2.2.1.1.2.2.1
Use to rewrite as .
Step 4.1.2.2.1.1.2.2.2
Apply the power rule and multiply exponents, .
Step 4.1.2.2.1.1.2.2.3
Combine and .
Step 4.1.2.2.1.1.2.2.4
Cancel the common factor of .
Step 4.1.2.2.1.1.2.2.4.1
Cancel the common factor.
Step 4.1.2.2.1.1.2.2.4.2
Rewrite the expression.
Step 4.1.2.2.1.1.2.2.5
Evaluate the exponent.
Step 4.1.2.2.1.1.3
Raise to the power of .
Step 4.1.2.2.1.1.4
Multiply by .
Step 4.1.2.2.1.1.5
Cancel the common factor of and .
Step 4.1.2.2.1.1.5.1
Factor out of .
Step 4.1.2.2.1.1.5.2
Cancel the common factors.
Step 4.1.2.2.1.1.5.2.1
Factor out of .
Step 4.1.2.2.1.1.5.2.2
Cancel the common factor.
Step 4.1.2.2.1.1.5.2.3
Rewrite the expression.
Step 4.1.2.2.1.1.6
Multiply .
Step 4.1.2.2.1.1.6.1
Combine and .
Step 4.1.2.2.1.1.6.2
Multiply by .
Step 4.1.2.2.1.1.7
Move the negative in front of the fraction.
Step 4.1.2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.2.1.3
Combine and .
Step 4.1.2.2.1.4
Combine the numerators over the common denominator.
Step 4.1.2.2.1.5
Simplify the numerator.
Step 4.1.2.2.1.5.1
Multiply by .
Step 4.1.2.2.1.5.2
Subtract from .
Step 4.2
Solve for in .
Step 4.2.1
Subtract from both sides of the equation.
Step 4.2.2
Simplify .
Step 4.2.2.1
To write as a fraction with a common denominator, multiply by .
Step 4.2.2.2
Combine and .
Step 4.2.2.3
Combine the numerators over the common denominator.
Step 4.2.2.4
Simplify the numerator.
Step 4.2.2.4.1
Multiply by .
Step 4.2.2.4.2
Subtract from .
Step 4.2.3
Factor out of .
Step 4.2.3.1
Factor out of .
Step 4.2.3.2
Factor out of .
Step 4.2.3.3
Factor out of .
Step 4.2.3.4
Factor out of .
Step 4.2.3.5
Factor out of .
Step 4.2.4
Divide each term in by and simplify.
Step 4.2.4.1
Divide each term in by .
Step 4.2.4.2
Simplify the left side.
Step 4.2.4.2.1
Cancel the common factor of .
Step 4.2.4.2.1.1
Cancel the common factor.
Step 4.2.4.2.1.2
Divide by .
Step 4.2.4.3
Simplify the right side.
Step 4.2.4.3.1
Divide by .
Step 4.2.5
Multiply through by the least common denominator , then simplify.
Step 4.2.5.1
Apply the distributive property.
Step 4.2.5.2
Simplify.
Step 4.2.5.2.1
Multiply by .
Step 4.2.5.2.2
Cancel the common factor of .
Step 4.2.5.2.2.1
Cancel the common factor.
Step 4.2.5.2.2.2
Rewrite the expression.
Step 4.2.6
Use the quadratic formula to find the solutions.
Step 4.2.7
Substitute the values , , and into the quadratic formula and solve for .
Step 4.2.8
Simplify.
Step 4.2.8.1
Simplify the numerator.
Step 4.2.8.1.1
Raise to the power of .
Step 4.2.8.1.2
Multiply .
Step 4.2.8.1.2.1
Multiply by .
Step 4.2.8.1.2.2
Multiply by .
Step 4.2.8.1.3
Subtract from .
Step 4.2.8.1.4
Rewrite as .
Step 4.2.8.1.4.1
Factor out of .
Step 4.2.8.1.4.2
Rewrite as .
Step 4.2.8.1.5
Pull terms out from under the radical.
Step 4.2.8.2
Multiply by .
Step 4.2.8.3
Simplify .
Step 4.2.9
Simplify the expression to solve for the portion of the .
Step 4.2.9.1
Simplify the numerator.
Step 4.2.9.1.1
Raise to the power of .
Step 4.2.9.1.2
Multiply .
Step 4.2.9.1.2.1
Multiply by .
Step 4.2.9.1.2.2
Multiply by .
Step 4.2.9.1.3
Subtract from .
Step 4.2.9.1.4
Rewrite as .
Step 4.2.9.1.4.1
Factor out of .
Step 4.2.9.1.4.2
Rewrite as .
Step 4.2.9.1.5
Pull terms out from under the radical.
Step 4.2.9.2
Multiply by .
Step 4.2.9.3
Simplify .
Step 4.2.9.4
Change the to .
Step 4.2.10
Simplify the expression to solve for the portion of the .
Step 4.2.10.1
Simplify the numerator.
Step 4.2.10.1.1
Raise to the power of .
Step 4.2.10.1.2
Multiply .
Step 4.2.10.1.2.1
Multiply by .
Step 4.2.10.1.2.2
Multiply by .
Step 4.2.10.1.3
Subtract from .
Step 4.2.10.1.4
Rewrite as .
Step 4.2.10.1.4.1
Factor out of .
Step 4.2.10.1.4.2
Rewrite as .
Step 4.2.10.1.5
Pull terms out from under the radical.
Step 4.2.10.2
Multiply by .
Step 4.2.10.3
Simplify .
Step 4.2.10.4
Change the to .
Step 4.2.11
The final answer is the combination of both solutions.
Step 4.3
Solve the system of equations.
Step 4.4
Solve the system of equations.
Step 5
Step 5.1
Replace all occurrences of with in each equation.
Step 5.1.1
Replace all occurrences of in with .
Step 5.1.2
Simplify .
Step 5.1.2.1
Simplify the left side.
Step 5.1.2.1.1
Simplify .
Step 5.1.2.1.1.1
Rewrite as .
Step 5.1.2.1.1.2
Expand using the FOIL Method.
Step 5.1.2.1.1.2.1
Apply the distributive property.
Step 5.1.2.1.1.2.2
Apply the distributive property.
Step 5.1.2.1.1.2.3
Apply the distributive property.
Step 5.1.2.1.1.3
Simplify and combine like terms.
Step 5.1.2.1.1.3.1
Simplify each term.
Step 5.1.2.1.1.3.1.1
Multiply by .
Step 5.1.2.1.1.3.1.2
Move to the left of .
Step 5.1.2.1.1.3.1.3
Multiply by .
Step 5.1.2.1.1.3.2
Subtract from .
Step 5.1.2.1.1.4
Apply the distributive property.
Step 5.1.2.1.1.5
Simplify.
Step 5.1.2.1.1.5.1
Multiply by .
Step 5.1.2.1.1.5.2
Multiply by .
Step 5.1.2.2
Simplify the right side.
Step 5.1.2.2.1
Simplify .
Step 5.1.2.2.1.1
Simplify each term.
Step 5.1.2.2.1.1.1
Use the power rule to distribute the exponent.
Step 5.1.2.2.1.1.1.1
Apply the product rule to .
Step 5.1.2.2.1.1.1.2
Apply the product rule to .
Step 5.1.2.2.1.1.1.3
Apply the product rule to .
Step 5.1.2.2.1.1.2
Raise to the power of .
Step 5.1.2.2.1.1.3
Multiply by .
Step 5.1.2.2.1.1.4
Simplify the numerator.
Step 5.1.2.2.1.1.4.1
Raise to the power of .
Step 5.1.2.2.1.1.4.2
Rewrite as .
Step 5.1.2.2.1.1.4.2.1
Use to rewrite as .
Step 5.1.2.2.1.1.4.2.2
Apply the power rule and multiply exponents, .
Step 5.1.2.2.1.1.4.2.3
Combine and .
Step 5.1.2.2.1.1.4.2.4
Cancel the common factor of .
Step 5.1.2.2.1.1.4.2.4.1
Cancel the common factor.
Step 5.1.2.2.1.1.4.2.4.2
Rewrite the expression.
Step 5.1.2.2.1.1.4.2.5
Evaluate the exponent.
Step 5.1.2.2.1.1.5
Raise to the power of .
Step 5.1.2.2.1.1.6
Multiply by .
Step 5.1.2.2.1.1.7
Cancel the common factor of and .
Step 5.1.2.2.1.1.7.1
Factor out of .
Step 5.1.2.2.1.1.7.2
Cancel the common factors.
Step 5.1.2.2.1.1.7.2.1
Factor out of .
Step 5.1.2.2.1.1.7.2.2
Cancel the common factor.
Step 5.1.2.2.1.1.7.2.3
Rewrite the expression.
Step 5.1.2.2.1.1.8
Multiply .
Step 5.1.2.2.1.1.8.1
Combine and .
Step 5.1.2.2.1.1.8.2
Multiply by .
Step 5.1.2.2.1.1.9
Move the negative in front of the fraction.
Step 5.1.2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 5.1.2.2.1.3
Combine and .
Step 5.1.2.2.1.4
Combine the numerators over the common denominator.
Step 5.1.2.2.1.5
Simplify the numerator.
Step 5.1.2.2.1.5.1
Multiply by .
Step 5.1.2.2.1.5.2
Subtract from .
Step 5.2
Solve for in .
Step 5.2.1
Subtract from both sides of the equation.
Step 5.2.2
Simplify .
Step 5.2.2.1
To write as a fraction with a common denominator, multiply by .
Step 5.2.2.2
Combine and .
Step 5.2.2.3
Combine the numerators over the common denominator.
Step 5.2.2.4
Simplify the numerator.
Step 5.2.2.4.1
Multiply by .
Step 5.2.2.4.2
Subtract from .
Step 5.2.3
Factor out of .
Step 5.2.3.1
Factor out of .
Step 5.2.3.2
Factor out of .
Step 5.2.3.3
Factor out of .
Step 5.2.3.4
Factor out of .
Step 5.2.3.5
Factor out of .
Step 5.2.4
Divide each term in by and simplify.
Step 5.2.4.1
Divide each term in by .
Step 5.2.4.2
Simplify the left side.
Step 5.2.4.2.1
Cancel the common factor of .
Step 5.2.4.2.1.1
Cancel the common factor.
Step 5.2.4.2.1.2
Divide by .
Step 5.2.4.3
Simplify the right side.
Step 5.2.4.3.1
Divide by .
Step 5.2.5
Multiply through by the least common denominator , then simplify.
Step 5.2.5.1
Apply the distributive property.
Step 5.2.5.2
Simplify.
Step 5.2.5.2.1
Multiply by .
Step 5.2.5.2.2
Cancel the common factor of .
Step 5.2.5.2.2.1
Cancel the common factor.
Step 5.2.5.2.2.2
Rewrite the expression.
Step 5.2.6
Use the quadratic formula to find the solutions.
Step 5.2.7
Substitute the values , , and into the quadratic formula and solve for .
Step 5.2.8
Simplify.
Step 5.2.8.1
Simplify the numerator.
Step 5.2.8.1.1
Raise to the power of .
Step 5.2.8.1.2
Multiply .
Step 5.2.8.1.2.1
Multiply by .
Step 5.2.8.1.2.2
Multiply by .
Step 5.2.8.1.3
Subtract from .
Step 5.2.8.1.4
Rewrite as .
Step 5.2.8.1.4.1
Factor out of .
Step 5.2.8.1.4.2
Rewrite as .
Step 5.2.8.1.5
Pull terms out from under the radical.
Step 5.2.8.2
Multiply by .
Step 5.2.8.3
Simplify .
Step 5.2.9
Simplify the expression to solve for the portion of the .
Step 5.2.9.1
Simplify the numerator.
Step 5.2.9.1.1
Raise to the power of .
Step 5.2.9.1.2
Multiply .
Step 5.2.9.1.2.1
Multiply by .
Step 5.2.9.1.2.2
Multiply by .
Step 5.2.9.1.3
Subtract from .
Step 5.2.9.1.4
Rewrite as .
Step 5.2.9.1.4.1
Factor out of .
Step 5.2.9.1.4.2
Rewrite as .
Step 5.2.9.1.5
Pull terms out from under the radical.
Step 5.2.9.2
Multiply by .
Step 5.2.9.3
Simplify .
Step 5.2.9.4
Change the to .
Step 5.2.10
Simplify the expression to solve for the portion of the .
Step 5.2.10.1
Simplify the numerator.
Step 5.2.10.1.1
Raise to the power of .
Step 5.2.10.1.2
Multiply .
Step 5.2.10.1.2.1
Multiply by .
Step 5.2.10.1.2.2
Multiply by .
Step 5.2.10.1.3
Subtract from .
Step 5.2.10.1.4
Rewrite as .
Step 5.2.10.1.4.1
Factor out of .
Step 5.2.10.1.4.2
Rewrite as .
Step 5.2.10.1.5
Pull terms out from under the radical.
Step 5.2.10.2
Multiply by .
Step 5.2.10.3
Simplify .
Step 5.2.10.4
Change the to .
Step 5.2.11
The final answer is the combination of both solutions.
Step 5.3
Solve the system of equations.
Step 5.4
Solve the system of equations.
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8