Enter a problem...
Algebra Examples
Step 1
Step 1.1
Simplify .
Step 1.1.1
Simplify each term.
Step 1.1.1.1
Apply the distributive property.
Step 1.1.1.2
Multiply by .
Step 1.1.1.3
Apply the distributive property.
Step 1.1.1.4
Multiply by .
Step 1.1.2
Add and .
Step 1.2
Move all terms not containing to the right side of the equation.
Step 1.2.1
Add to both sides of the equation.
Step 1.2.2
Add to both sides of the equation.
Step 1.2.3
Combine the opposite terms in .
Step 1.2.3.1
Add and .
Step 1.2.3.2
Add and .
Step 1.3
Divide each term in by and simplify.
Step 1.3.1
Divide each term in by .
Step 1.3.2
Simplify the left side.
Step 1.3.2.1
Cancel the common factor of .
Step 1.3.2.1.1
Cancel the common factor.
Step 1.3.2.1.2
Divide by .
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Use the power rule to distribute the exponent.
Step 2.2.1.1.1.1
Apply the product rule to .
Step 2.2.1.1.1.2
Apply the product rule to .
Step 2.2.1.1.2
Raise to the power of .
Step 2.2.1.1.3
Raise to the power of .
Step 2.2.1.1.4
Multiply .
Step 2.2.1.1.4.1
Combine and .
Step 2.2.1.1.4.2
Multiply by .
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Simplify terms.
Step 2.2.1.3.1
Combine and .
Step 2.2.1.3.2
Combine the numerators over the common denominator.
Step 2.2.1.4
Simplify each term.
Step 2.2.1.4.1
Simplify the numerator.
Step 2.2.1.4.1.1
Factor out of .
Step 2.2.1.4.1.1.1
Factor out of .
Step 2.2.1.4.1.1.2
Factor out of .
Step 2.2.1.4.1.1.3
Factor out of .
Step 2.2.1.4.1.2
Multiply by .
Step 2.2.1.4.1.3
Add and .
Step 2.2.1.4.2
Move to the left of .
Step 3
Step 3.1
Add to both sides of the equation.
Step 3.2
Multiply both sides of the equation by .
Step 3.3
Simplify both sides of the equation.
Step 3.3.1
Simplify the left side.
Step 3.3.1.1
Simplify .
Step 3.3.1.1.1
Combine.
Step 3.3.1.1.2
Cancel the common factor of .
Step 3.3.1.1.2.1
Cancel the common factor.
Step 3.3.1.1.2.2
Rewrite the expression.
Step 3.3.1.1.3
Cancel the common factor of .
Step 3.3.1.1.3.1
Cancel the common factor.
Step 3.3.1.1.3.2
Divide by .
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Cancel the common factor of .
Step 3.3.2.1.1
Cancel the common factor.
Step 3.3.2.1.2
Rewrite the expression.
Step 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.5
Simplify .
Step 3.5.1
Rewrite as .
Step 3.5.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.6
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.6.1
First, use the positive value of the to find the first solution.
Step 3.6.2
Next, use the negative value of the to find the second solution.
Step 3.6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Cancel the common factor of .
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Divide by .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Cancel the common factor of and .
Step 5.2.1.1.1
Factor out of .
Step 5.2.1.1.2
Cancel the common factors.
Step 5.2.1.1.2.1
Factor out of .
Step 5.2.1.1.2.2
Cancel the common factor.
Step 5.2.1.1.2.3
Rewrite the expression.
Step 5.2.1.1.2.4
Divide by .
Step 5.2.1.2
Multiply by .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8