Enter a problem...
Algebra Examples
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify .
Step 2.2.1.1
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.2
Combine and .
Step 2.2.1.3
Combine the numerators over the common denominator.
Step 2.2.1.4
Simplify the numerator.
Step 2.2.1.4.1
Multiply by .
Step 2.2.1.4.2
Add and .
Step 2.2.1.5
Rewrite as .
Step 2.2.1.6
Expand using the FOIL Method.
Step 2.2.1.6.1
Apply the distributive property.
Step 2.2.1.6.2
Apply the distributive property.
Step 2.2.1.6.3
Apply the distributive property.
Step 2.2.1.7
Simplify and combine like terms.
Step 2.2.1.7.1
Simplify each term.
Step 2.2.1.7.1.1
Multiply .
Step 2.2.1.7.1.1.1
Multiply by .
Step 2.2.1.7.1.1.2
Raise to the power of .
Step 2.2.1.7.1.1.3
Raise to the power of .
Step 2.2.1.7.1.1.4
Use the power rule to combine exponents.
Step 2.2.1.7.1.1.5
Add and .
Step 2.2.1.7.1.1.6
Multiply by .
Step 2.2.1.7.1.2
Multiply .
Step 2.2.1.7.1.2.1
Multiply by .
Step 2.2.1.7.1.2.2
Multiply by .
Step 2.2.1.7.1.3
Move to the left of .
Step 2.2.1.7.1.4
Multiply .
Step 2.2.1.7.1.4.1
Multiply by .
Step 2.2.1.7.1.4.2
Multiply by .
Step 2.2.1.7.1.5
Multiply .
Step 2.2.1.7.1.5.1
Multiply by .
Step 2.2.1.7.1.5.2
Multiply by .
Step 2.2.1.7.1.5.3
Multiply by .
Step 2.2.1.7.2
Add and .
Step 2.2.1.8
Multiply .
Step 2.2.1.8.1
Combine and .
Step 2.2.1.8.2
Multiply by .
Step 2.2.1.9
Apply the distributive property.
Step 2.2.1.10
Simplify.
Step 2.2.1.10.1
Combine and .
Step 2.2.1.10.2
Multiply .
Step 2.2.1.10.2.1
Combine and .
Step 2.2.1.10.2.2
Multiply by .
Step 2.2.1.10.3
Multiply .
Step 2.2.1.10.3.1
Combine and .
Step 2.2.1.10.3.2
Multiply by .
Step 3
Step 3.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 3.2
Move all terms containing to the left side of the equation.
Step 3.2.1
Subtract from both sides of the equation.
Step 3.2.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.3
Combine and .
Step 3.2.4
Combine the numerators over the common denominator.
Step 3.2.5
Combine the numerators over the common denominator.
Step 3.2.6
Multiply by .
Step 3.2.7
Subtract from .
Step 3.3
Multiply both sides by .
Step 3.4
Simplify.
Step 3.4.1
Simplify the left side.
Step 3.4.1.1
Cancel the common factor of .
Step 3.4.1.1.1
Cancel the common factor.
Step 3.4.1.1.2
Rewrite the expression.
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Multiply by .
Step 3.5
Solve for .
Step 3.5.1
Move all terms to the left side of the equation and simplify.
Step 3.5.1.1
Subtract from both sides of the equation.
Step 3.5.1.2
Subtract from .
Step 3.5.2
Use the quadratic formula to find the solutions.
Step 3.5.3
Substitute the values , , and into the quadratic formula and solve for .
Step 3.5.4
Simplify.
Step 3.5.4.1
Simplify the numerator.
Step 3.5.4.1.1
Raise to the power of .
Step 3.5.4.1.2
Multiply .
Step 3.5.4.1.2.1
Multiply by .
Step 3.5.4.1.2.2
Multiply by .
Step 3.5.4.1.3
Subtract from .
Step 3.5.4.1.4
Rewrite as .
Step 3.5.4.1.5
Rewrite as .
Step 3.5.4.1.6
Rewrite as .
Step 3.5.4.1.7
Rewrite as .
Step 3.5.4.1.7.1
Factor out of .
Step 3.5.4.1.7.2
Rewrite as .
Step 3.5.4.1.8
Pull terms out from under the radical.
Step 3.5.4.1.9
Move to the left of .
Step 3.5.4.2
Multiply by .
Step 3.5.5
Simplify the expression to solve for the portion of the .
Step 3.5.5.1
Simplify the numerator.
Step 3.5.5.1.1
Raise to the power of .
Step 3.5.5.1.2
Multiply .
Step 3.5.5.1.2.1
Multiply by .
Step 3.5.5.1.2.2
Multiply by .
Step 3.5.5.1.3
Subtract from .
Step 3.5.5.1.4
Rewrite as .
Step 3.5.5.1.5
Rewrite as .
Step 3.5.5.1.6
Rewrite as .
Step 3.5.5.1.7
Rewrite as .
Step 3.5.5.1.7.1
Factor out of .
Step 3.5.5.1.7.2
Rewrite as .
Step 3.5.5.1.8
Pull terms out from under the radical.
Step 3.5.5.1.9
Move to the left of .
Step 3.5.5.2
Multiply by .
Step 3.5.5.3
Change the to .
Step 3.5.5.4
Rewrite as .
Step 3.5.5.5
Factor out of .
Step 3.5.5.6
Factor out of .
Step 3.5.5.7
Move the negative in front of the fraction.
Step 3.5.6
Simplify the expression to solve for the portion of the .
Step 3.5.6.1
Simplify the numerator.
Step 3.5.6.1.1
Raise to the power of .
Step 3.5.6.1.2
Multiply .
Step 3.5.6.1.2.1
Multiply by .
Step 3.5.6.1.2.2
Multiply by .
Step 3.5.6.1.3
Subtract from .
Step 3.5.6.1.4
Rewrite as .
Step 3.5.6.1.5
Rewrite as .
Step 3.5.6.1.6
Rewrite as .
Step 3.5.6.1.7
Rewrite as .
Step 3.5.6.1.7.1
Factor out of .
Step 3.5.6.1.7.2
Rewrite as .
Step 3.5.6.1.8
Pull terms out from under the radical.
Step 3.5.6.1.9
Move to the left of .
Step 3.5.6.2
Multiply by .
Step 3.5.6.3
Change the to .
Step 3.5.6.4
Rewrite as .
Step 3.5.6.5
Factor out of .
Step 3.5.6.6
Factor out of .
Step 3.5.6.7
Move the negative in front of the fraction.
Step 3.5.7
The final answer is the combination of both solutions.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Combine the numerators over the common denominator.
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Combine and .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 4.2.1.5
Rewrite as .
Step 4.2.1.6
Factor out of .
Step 4.2.1.7
Factor out of .
Step 4.2.1.8
Move the negative in front of the fraction.
Step 4.2.1.9
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.1.10
Multiply .
Step 4.2.1.10.1
Multiply by .
Step 4.2.1.10.2
Multiply by .
Step 4.2.1.11
Cancel the common factor of and .
Step 4.2.1.11.1
Factor out of .
Step 4.2.1.11.2
Factor out of .
Step 4.2.1.11.3
Factor out of .
Step 4.2.1.11.4
Cancel the common factors.
Step 4.2.1.11.4.1
Factor out of .
Step 4.2.1.11.4.2
Cancel the common factor.
Step 4.2.1.11.4.3
Rewrite the expression.
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Combine the numerators over the common denominator.
Step 5.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.1.3
Combine and .
Step 5.2.1.4
Combine the numerators over the common denominator.
Step 5.2.1.5
Rewrite as .
Step 5.2.1.6
Factor out of .
Step 5.2.1.7
Factor out of .
Step 5.2.1.8
Move the negative in front of the fraction.
Step 5.2.1.9
Multiply the numerator by the reciprocal of the denominator.
Step 5.2.1.10
Multiply .
Step 5.2.1.10.1
Multiply by .
Step 5.2.1.10.2
Multiply by .
Step 5.2.1.11
Cancel the common factor of and .
Step 5.2.1.11.1
Factor out of .
Step 5.2.1.11.2
Factor out of .
Step 5.2.1.11.3
Factor out of .
Step 5.2.1.11.4
Cancel the common factors.
Step 5.2.1.11.4.1
Factor out of .
Step 5.2.1.11.4.2
Cancel the common factor.
Step 5.2.1.11.4.3
Rewrite the expression.
Step 6
List all of the solutions.
Step 7