Algebra Examples

Find the Inverse f(x)=2 cube root of 1/2(x-4)+3
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 3.4
Simplify each side of the equation.
Tap for more steps...
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Tap for more steps...
Step 3.4.2.1
Simplify .
Tap for more steps...
Step 3.4.2.1.1
Apply the distributive property.
Step 3.4.2.1.2
Combine and .
Step 3.4.2.1.3
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.1.3.1
Factor out of .
Step 3.4.2.1.3.2
Cancel the common factor.
Step 3.4.2.1.3.3
Rewrite the expression.
Step 3.4.2.1.4
Simplify the expression.
Tap for more steps...
Step 3.4.2.1.4.1
Apply the product rule to .
Step 3.4.2.1.4.2
Raise to the power of .
Step 3.4.2.1.4.3
Multiply the exponents in .
Tap for more steps...
Step 3.4.2.1.4.3.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.4.3.2
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.1.4.3.2.1
Cancel the common factor.
Step 3.4.2.1.4.3.2.2
Rewrite the expression.
Step 3.4.2.1.5
Simplify.
Step 3.4.2.1.6
Apply the distributive property.
Step 3.4.2.1.7
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.1.7.1
Factor out of .
Step 3.4.2.1.7.2
Cancel the common factor.
Step 3.4.2.1.7.3
Rewrite the expression.
Step 3.4.2.1.8
Multiply by .
Step 3.4.3
Simplify the right side.
Tap for more steps...
Step 3.4.3.1
Simplify .
Tap for more steps...
Step 3.4.3.1.1
Use the Binomial Theorem.
Step 3.4.3.1.2
Simplify each term.
Tap for more steps...
Step 3.4.3.1.2.1
Multiply by .
Step 3.4.3.1.2.2
Raise to the power of .
Step 3.4.3.1.2.3
Multiply by .
Step 3.4.3.1.2.4
Raise to the power of .
Step 3.5
Solve for .
Tap for more steps...
Step 3.5.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.5.1.1
Add to both sides of the equation.
Step 3.5.1.2
Add and .
Step 3.5.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.5.2.1
Divide each term in by .
Step 3.5.2.2
Simplify the left side.
Tap for more steps...
Step 3.5.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.5.2.2.1.1
Cancel the common factor.
Step 3.5.2.2.1.2
Divide by .
Step 3.5.2.3
Simplify the right side.
Tap for more steps...
Step 3.5.2.3.1
Simplify each term.
Tap for more steps...
Step 3.5.2.3.1.1
Move the negative in front of the fraction.
Step 3.5.2.3.1.2
Move the negative in front of the fraction.
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Tap for more steps...
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Combine the numerators over the common denominator.
Step 5.2.4
Simplify each term.
Tap for more steps...
Step 5.2.4.1
Use the Binomial Theorem.
Step 5.2.4.2
Simplify each term.
Tap for more steps...
Step 5.2.4.2.1
Apply the product rule to .
Step 5.2.4.2.2
Raise to the power of .
Step 5.2.4.2.3
Rewrite as .
Tap for more steps...
Step 5.2.4.2.3.1
Use to rewrite as .
Step 5.2.4.2.3.2
Apply the power rule and multiply exponents, .
Step 5.2.4.2.3.3
Combine and .
Step 5.2.4.2.3.4
Cancel the common factor of .
Tap for more steps...
Step 5.2.4.2.3.4.1
Cancel the common factor.
Step 5.2.4.2.3.4.2
Rewrite the expression.
Step 5.2.4.2.3.5
Simplify.
Step 5.2.4.2.4
Apply the distributive property.
Step 5.2.4.2.5
Combine and .
Step 5.2.4.2.6
Cancel the common factor of .
Tap for more steps...
Step 5.2.4.2.6.1
Factor out of .
Step 5.2.4.2.6.2
Cancel the common factor.
Step 5.2.4.2.6.3
Rewrite the expression.
Step 5.2.4.2.7
Apply the distributive property.
Step 5.2.4.2.8
Cancel the common factor of .
Tap for more steps...
Step 5.2.4.2.8.1
Factor out of .
Step 5.2.4.2.8.2
Cancel the common factor.
Step 5.2.4.2.8.3
Rewrite the expression.
Step 5.2.4.2.9
Multiply by .
Step 5.2.4.2.10
Apply the product rule to .
Step 5.2.4.2.11
Raise to the power of .
Step 5.2.4.2.12
Rewrite as .
Step 5.2.4.2.13
Apply the product rule to .
Step 5.2.4.2.14
Apply the product rule to .
Step 5.2.4.2.15
One to any power is one.
Step 5.2.4.2.16
Raise to the power of .
Step 5.2.4.2.17
Combine and .
Step 5.2.4.2.18
Rewrite as .
Step 5.2.4.2.19
Multiply by .
Step 5.2.4.2.20
Combine and simplify the denominator.
Tap for more steps...
Step 5.2.4.2.20.1
Multiply by .
Step 5.2.4.2.20.2
Raise to the power of .
Step 5.2.4.2.20.3
Use the power rule to combine exponents.
Step 5.2.4.2.20.4
Add and .
Step 5.2.4.2.20.5
Rewrite as .
Tap for more steps...
Step 5.2.4.2.20.5.1
Use to rewrite as .
Step 5.2.4.2.20.5.2
Apply the power rule and multiply exponents, .
Step 5.2.4.2.20.5.3
Combine and .
Step 5.2.4.2.20.5.4
Cancel the common factor of .
Tap for more steps...
Step 5.2.4.2.20.5.4.1
Cancel the common factor.
Step 5.2.4.2.20.5.4.2
Rewrite the expression.
Step 5.2.4.2.20.5.5
Evaluate the exponent.
Step 5.2.4.2.21
Simplify the numerator.
Tap for more steps...
Step 5.2.4.2.21.1
Rewrite as .
Step 5.2.4.2.21.2
Raise to the power of .
Step 5.2.4.2.21.3
Rewrite as .
Tap for more steps...
Step 5.2.4.2.21.3.1
Factor out of .
Step 5.2.4.2.21.3.2
Rewrite as .
Step 5.2.4.2.21.4
Pull terms out from under the radical.
Step 5.2.4.2.21.5
Combine using the product rule for radicals.
Step 5.2.4.2.22
Cancel the common factor of .
Tap for more steps...
Step 5.2.4.2.22.1
Cancel the common factor.
Step 5.2.4.2.22.2
Rewrite the expression.
Step 5.2.4.2.23
Multiply by .
Step 5.2.4.2.24
Multiply by .
Step 5.2.4.2.25
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.4.2.25.1
Move .
Step 5.2.4.2.25.2
Multiply by .
Tap for more steps...
Step 5.2.4.2.25.2.1
Raise to the power of .
Step 5.2.4.2.25.2.2
Use the power rule to combine exponents.
Step 5.2.4.2.25.3
Add and .
Step 5.2.4.2.26
Raise to the power of .
Step 5.2.4.2.27
Multiply by .
Step 5.2.4.2.28
Raise to the power of .
Step 5.2.4.3
Add and .
Step 5.2.4.4
Rewrite as .
Step 5.2.4.5
Expand using the FOIL Method.
Tap for more steps...
Step 5.2.4.5.1
Apply the distributive property.
Step 5.2.4.5.2
Apply the distributive property.
Step 5.2.4.5.3
Apply the distributive property.
Step 5.2.4.6
Simplify and combine like terms.
Tap for more steps...
Step 5.2.4.6.1
Simplify each term.
Tap for more steps...
Step 5.2.4.6.1.1
Multiply .
Tap for more steps...
Step 5.2.4.6.1.1.1
Multiply by .
Step 5.2.4.6.1.1.2
Raise to the power of .
Step 5.2.4.6.1.1.3
Raise to the power of .
Step 5.2.4.6.1.1.4
Use the power rule to combine exponents.
Step 5.2.4.6.1.1.5
Add and .
Step 5.2.4.6.1.2
Rewrite as .
Step 5.2.4.6.1.3
Apply the product rule to .
Step 5.2.4.6.1.4
Apply the product rule to .
Step 5.2.4.6.1.5
One to any power is one.
Step 5.2.4.6.1.6
Raise to the power of .
Step 5.2.4.6.1.7
Combine and .
Step 5.2.4.6.1.8
Rewrite as .
Step 5.2.4.6.1.9
Multiply by .
Step 5.2.4.6.1.10
Combine and simplify the denominator.
Tap for more steps...
Step 5.2.4.6.1.10.1
Multiply by .
Step 5.2.4.6.1.10.2
Raise to the power of .
Step 5.2.4.6.1.10.3
Use the power rule to combine exponents.
Step 5.2.4.6.1.10.4
Add and .
Step 5.2.4.6.1.10.5
Rewrite as .
Tap for more steps...
Step 5.2.4.6.1.10.5.1
Use to rewrite as .
Step 5.2.4.6.1.10.5.2
Apply the power rule and multiply exponents, .
Step 5.2.4.6.1.10.5.3
Combine and .
Step 5.2.4.6.1.10.5.4
Cancel the common factor of .
Tap for more steps...
Step 5.2.4.6.1.10.5.4.1
Cancel the common factor.
Step 5.2.4.6.1.10.5.4.2
Rewrite the expression.
Step 5.2.4.6.1.10.5.5
Evaluate the exponent.
Step 5.2.4.6.1.11
Simplify the numerator.
Tap for more steps...
Step 5.2.4.6.1.11.1
Rewrite as .
Step 5.2.4.6.1.11.2
Raise to the power of .
Step 5.2.4.6.1.11.3
Rewrite as .
Tap for more steps...
Step 5.2.4.6.1.11.3.1
Factor out of .
Step 5.2.4.6.1.11.3.2
Rewrite as .
Step 5.2.4.6.1.11.4
Pull terms out from under the radical.
Step 5.2.4.6.1.11.5
Combine using the product rule for radicals.
Step 5.2.4.6.1.12
Cancel the common factor of .
Tap for more steps...
Step 5.2.4.6.1.12.1
Cancel the common factor.
Step 5.2.4.6.1.12.2
Rewrite the expression.
Step 5.2.4.6.1.13
Multiply by .
Step 5.2.4.6.1.14
Multiply by .
Step 5.2.4.6.1.15
Multiply by .
Step 5.2.4.6.2
Add and .
Step 5.2.4.7
Apply the distributive property.
Step 5.2.4.8
Simplify.
Tap for more steps...
Step 5.2.4.8.1
Multiply by .
Step 5.2.4.8.2
Multiply by .
Step 5.2.4.8.3
Multiply by .
Step 5.2.4.9
Apply the distributive property.
Step 5.2.4.10
Multiply by .
Step 5.2.4.11
Multiply by .
Step 5.2.5
Simplify terms.
Tap for more steps...
Step 5.2.5.1
Combine the opposite terms in .
Tap for more steps...
Step 5.2.5.1.1
Subtract from .
Step 5.2.5.1.2
Add and .
Step 5.2.5.1.3
Add and .
Step 5.2.5.1.4
Add and .
Step 5.2.5.1.5
Subtract from .
Step 5.2.5.1.6
Add and .
Step 5.2.5.2
Subtract from .
Step 5.2.5.3
Combine the opposite terms in .
Tap for more steps...
Step 5.2.5.3.1
Add and .
Step 5.2.5.3.2
Add and .
Step 5.2.5.4
Cancel the common factor of .
Tap for more steps...
Step 5.2.5.4.1
Cancel the common factor.
Step 5.2.5.4.2
Divide by .
Step 5.3
Evaluate .
Tap for more steps...
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
To write as a fraction with a common denominator, multiply by .
Step 5.3.3.2
Combine and .
Step 5.3.3.3
Combine the numerators over the common denominator.
Step 5.3.3.4
Simplify the numerator.
Tap for more steps...
Step 5.3.3.4.1
Multiply by .
Step 5.3.3.4.2
Subtract from .
Step 5.3.3.5
Combine the numerators over the common denominator.
Step 5.3.3.6
Multiply by .
Step 5.3.3.7
Multiply by .
Step 5.3.3.8
Rewrite as .
Tap for more steps...
Step 5.3.3.8.1
Factor the perfect power out of .
Step 5.3.3.8.2
Factor the perfect power out of .
Step 5.3.3.8.3
Rearrange the fraction .
Step 5.3.3.9
Pull terms out from under the radical.
Step 5.3.3.10
Make each term match the terms from the binomial theorem formula.
Step 5.3.3.11
Factor using the binomial theorem.
Step 5.3.3.12
Pull terms out from under the radical, assuming real numbers.
Step 5.3.3.13
Apply the distributive property.
Step 5.3.3.14
Combine and .
Step 5.3.3.15
Combine and .
Step 5.3.3.16
Move the negative in front of the fraction.
Step 5.3.3.17
Apply the distributive property.
Step 5.3.3.18
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.18.1
Cancel the common factor.
Step 5.3.3.18.2
Rewrite the expression.
Step 5.3.3.19
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.19.1
Move the leading negative in into the numerator.
Step 5.3.3.19.2
Cancel the common factor.
Step 5.3.3.19.3
Rewrite the expression.
Step 5.3.4
Combine the opposite terms in .
Tap for more steps...
Step 5.3.4.1
Add and .
Step 5.3.4.2
Add and .
Step 5.4
Since and , then is the inverse of .