Algebra Examples

Find the Inverse f(x)=(x^3-2)^(1/5)+3
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.4
Simplify the exponent.
Tap for more steps...
Step 3.4.1
Simplify the left side.
Tap for more steps...
Step 3.4.1.1
Simplify .
Tap for more steps...
Step 3.4.1.1.1
Multiply the exponents in .
Tap for more steps...
Step 3.4.1.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.1.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.4.1.1.1.2.1
Cancel the common factor.
Step 3.4.1.1.1.2.2
Rewrite the expression.
Step 3.4.1.1.2
Simplify.
Step 3.4.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.1
Simplify .
Tap for more steps...
Step 3.4.2.1.1
Use the Binomial Theorem.
Step 3.4.2.1.2
Simplify each term.
Tap for more steps...
Step 3.4.2.1.2.1
Multiply by .
Step 3.4.2.1.2.2
Raise to the power of .
Step 3.4.2.1.2.3
Multiply by .
Step 3.4.2.1.2.4
Raise to the power of .
Step 3.4.2.1.2.5
Multiply by .
Step 3.4.2.1.2.6
Raise to the power of .
Step 3.4.2.1.2.7
Multiply by .
Step 3.4.2.1.2.8
Raise to the power of .
Step 3.5
Solve for .
Tap for more steps...
Step 3.5.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.5.1.1
Add to both sides of the equation.
Step 3.5.1.2
Add and .
Step 3.5.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Tap for more steps...
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Use the Binomial Theorem.
Step 5.2.4
Simplify terms.
Tap for more steps...
Step 5.2.4.1
Simplify each term.
Tap for more steps...
Step 5.2.4.1.1
Multiply the exponents in .
Tap for more steps...
Step 5.2.4.1.1.1
Apply the power rule and multiply exponents, .
Step 5.2.4.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 5.2.4.1.1.2.1
Cancel the common factor.
Step 5.2.4.1.1.2.2
Rewrite the expression.
Step 5.2.4.1.2
Simplify.
Step 5.2.4.1.3
Multiply the exponents in .
Tap for more steps...
Step 5.2.4.1.3.1
Apply the power rule and multiply exponents, .
Step 5.2.4.1.3.2
Combine and .
Step 5.2.4.1.4
Multiply by .
Step 5.2.4.1.5
Multiply the exponents in .
Tap for more steps...
Step 5.2.4.1.5.1
Apply the power rule and multiply exponents, .
Step 5.2.4.1.5.2
Combine and .
Step 5.2.4.1.6
Raise to the power of .
Step 5.2.4.1.7
Multiply by .
Step 5.2.4.1.8
Multiply the exponents in .
Tap for more steps...
Step 5.2.4.1.8.1
Apply the power rule and multiply exponents, .
Step 5.2.4.1.8.2
Combine and .
Step 5.2.4.1.9
Raise to the power of .
Step 5.2.4.1.10
Multiply by .
Step 5.2.4.1.11
Raise to the power of .
Step 5.2.4.1.12
Multiply by .
Step 5.2.4.1.13
Raise to the power of .
Step 5.2.4.2
Add and .
Step 5.2.5
Use the Binomial Theorem.
Step 5.2.6
Simplify terms.
Tap for more steps...
Step 5.2.6.1
Simplify each term.
Tap for more steps...
Step 5.2.6.1.1
Multiply the exponents in .
Tap for more steps...
Step 5.2.6.1.1.1
Apply the power rule and multiply exponents, .
Step 5.2.6.1.1.2
Combine and .
Step 5.2.6.1.2
Multiply the exponents in .
Tap for more steps...
Step 5.2.6.1.2.1
Apply the power rule and multiply exponents, .
Step 5.2.6.1.2.2
Combine and .
Step 5.2.6.1.3
Multiply by .
Step 5.2.6.1.4
Multiply the exponents in .
Tap for more steps...
Step 5.2.6.1.4.1
Apply the power rule and multiply exponents, .
Step 5.2.6.1.4.2
Combine and .
Step 5.2.6.1.5
Raise to the power of .
Step 5.2.6.1.6
Multiply by .
Step 5.2.6.1.7
Raise to the power of .
Step 5.2.6.1.8
Multiply by .
Step 5.2.6.1.9
Raise to the power of .
Step 5.2.6.2
Apply the distributive property.
Step 5.2.7
Simplify.
Tap for more steps...
Step 5.2.7.1
Multiply by .
Step 5.2.7.2
Multiply by .
Step 5.2.7.3
Multiply by .
Step 5.2.7.4
Multiply by .
Step 5.2.8
Use the Binomial Theorem.
Step 5.2.9
Simplify terms.
Tap for more steps...
Step 5.2.9.1
Simplify each term.
Tap for more steps...
Step 5.2.9.1.1
Multiply the exponents in .
Tap for more steps...
Step 5.2.9.1.1.1
Apply the power rule and multiply exponents, .
Step 5.2.9.1.1.2
Combine and .
Step 5.2.9.1.2
Multiply the exponents in .
Tap for more steps...
Step 5.2.9.1.2.1
Apply the power rule and multiply exponents, .
Step 5.2.9.1.2.2
Combine and .
Step 5.2.9.1.3
Multiply by .
Step 5.2.9.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.9.1.4.1
Move .
Step 5.2.9.1.4.2
Multiply by .
Tap for more steps...
Step 5.2.9.1.4.2.1
Raise to the power of .
Step 5.2.9.1.4.2.2
Use the power rule to combine exponents.
Step 5.2.9.1.4.3
Add and .
Step 5.2.9.1.5
Raise to the power of .
Step 5.2.9.1.6
Raise to the power of .
Step 5.2.9.2
Apply the distributive property.
Step 5.2.10
Simplify.
Tap for more steps...
Step 5.2.10.1
Multiply by .
Step 5.2.10.2
Multiply by .
Step 5.2.10.3
Multiply by .
Step 5.2.11
Rewrite as .
Step 5.2.12
Expand using the FOIL Method.
Tap for more steps...
Step 5.2.12.1
Apply the distributive property.
Step 5.2.12.2
Apply the distributive property.
Step 5.2.12.3
Apply the distributive property.
Step 5.2.13
Simplify and combine like terms.
Tap for more steps...
Step 5.2.13.1
Simplify each term.
Tap for more steps...
Step 5.2.13.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.13.1.1.1
Use the power rule to combine exponents.
Step 5.2.13.1.1.2
Combine the numerators over the common denominator.
Step 5.2.13.1.1.3
Add and .
Step 5.2.13.1.2
Move to the left of .
Step 5.2.13.1.3
Multiply by .
Step 5.2.13.2
Add and .
Step 5.2.14
Apply the distributive property.
Step 5.2.15
Simplify.
Tap for more steps...
Step 5.2.15.1
Multiply by .
Step 5.2.15.2
Multiply by .
Step 5.2.16
Apply the distributive property.
Step 5.2.17
Multiply by .
Step 5.2.18
Subtract from .
Step 5.2.19
Add and .
Step 5.2.20
Subtract from .
Step 5.2.21
Subtract from .
Step 5.2.22
Subtract from .
Step 5.2.23
Simplify by adding and subtracting.
Tap for more steps...
Step 5.2.23.1
Subtract from .
Step 5.2.23.2
Add and .
Step 5.2.23.3
Subtract from .
Step 5.2.23.4
Add and .
Step 5.2.23.5
Subtract from .
Step 5.2.23.6
Add and .
Step 5.2.24
Add and .
Step 5.2.25
Add and .
Step 5.2.26
Add and .
Step 5.2.27
Subtract from .
Step 5.2.28
Add and .
Step 5.2.29
Add and .
Step 5.2.30
Subtract from .
Step 5.2.31
Add and .
Step 5.2.32
Add and .
Step 5.2.33
Pull terms out from under the radical, assuming real numbers.
Step 5.3
Evaluate .
Tap for more steps...
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
Rewrite as .
Tap for more steps...
Step 5.3.3.1.1
Use to rewrite as .
Step 5.3.3.1.2
Apply the power rule and multiply exponents, .
Step 5.3.3.1.3
Combine and .
Step 5.3.3.1.4
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.1.4.1
Cancel the common factor.
Step 5.3.3.1.4.2
Rewrite the expression.
Step 5.3.3.1.5
Simplify.
Step 5.3.3.2
Subtract from .
Step 5.4
Since and , then is the inverse of .