Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Add to both sides of the equation.
Step 3.3
To remove the radical on the left side of the equation, raise both sides of the equation to the power of .
Step 3.4
Simplify each side of the equation.
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Multiply the exponents in .
Step 3.4.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.1.2
Cancel the common factor of .
Step 3.4.2.1.1.2.1
Cancel the common factor.
Step 3.4.2.1.1.2.2
Rewrite the expression.
Step 3.4.2.1.2
Simplify.
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Simplify .
Step 3.4.3.1.1
Use the Binomial Theorem.
Step 3.4.3.1.2
Simplify each term.
Step 3.4.3.1.2.1
Multiply by .
Step 3.4.3.1.2.2
One to any power is one.
Step 3.4.3.1.2.3
Multiply by .
Step 3.4.3.1.2.4
One to any power is one.
Step 3.4.3.1.2.5
Multiply by .
Step 3.4.3.1.2.6
One to any power is one.
Step 3.4.3.1.2.7
Multiply by .
Step 3.4.3.1.2.8
One to any power is one.
Step 3.5
Solve for .
Step 3.5.1
Move all terms not containing to the right side of the equation.
Step 3.5.1.1
Add to both sides of the equation.
Step 3.5.1.2
Add and .
Step 3.5.2
Divide each term in by and simplify.
Step 3.5.2.1
Divide each term in by .
Step 3.5.2.2
Simplify the left side.
Step 3.5.2.2.1
Cancel the common factor of .
Step 3.5.2.2.1.1
Cancel the common factor.
Step 3.5.2.2.1.2
Divide by .
Step 3.5.2.3
Simplify the right side.
Step 3.5.2.3.1
Simplify each term.
Step 3.5.2.3.1.1
Cancel the common factor of and .
Step 3.5.2.3.1.1.1
Factor out of .
Step 3.5.2.3.1.1.2
Cancel the common factors.
Step 3.5.2.3.1.1.2.1
Factor out of .
Step 3.5.2.3.1.1.2.2
Cancel the common factor.
Step 3.5.2.3.1.1.2.3
Rewrite the expression.
Step 3.5.2.3.1.1.2.4
Divide by .
Step 3.5.2.3.1.2
Cancel the common factor of and .
Step 3.5.2.3.1.2.1
Factor out of .
Step 3.5.2.3.1.2.2
Cancel the common factors.
Step 3.5.2.3.1.2.2.1
Factor out of .
Step 3.5.2.3.1.2.2.2
Cancel the common factor.
Step 3.5.2.3.1.2.2.3
Rewrite the expression.
Step 3.5.2.3.1.2.2.4
Divide by .
Step 3.5.2.3.1.3
Divide by .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify terms.
Step 5.2.3.1
Simplify each term.
Step 5.2.3.1.1
Use the Binomial Theorem.
Step 5.2.3.1.2
Simplify each term.
Step 5.2.3.1.2.1
Rewrite as .
Step 5.2.3.1.2.2
Rewrite as .
Step 5.2.3.1.2.3
Multiply by .
Step 5.2.3.1.2.4
Raise to the power of .
Step 5.2.3.1.2.5
Multiply by .
Step 5.2.3.1.2.6
Raise to the power of .
Step 5.2.3.1.3
Apply the distributive property.
Step 5.2.3.1.4
Simplify.
Step 5.2.3.1.4.1
Multiply by .
Step 5.2.3.1.4.2
Multiply by .
Step 5.2.3.1.4.3
Multiply by .
Step 5.2.3.1.5
Rewrite as .
Step 5.2.3.1.6
Expand using the FOIL Method.
Step 5.2.3.1.6.1
Apply the distributive property.
Step 5.2.3.1.6.2
Apply the distributive property.
Step 5.2.3.1.6.3
Apply the distributive property.
Step 5.2.3.1.7
Simplify and combine like terms.
Step 5.2.3.1.7.1
Simplify each term.
Step 5.2.3.1.7.1.1
Multiply .
Step 5.2.3.1.7.1.1.1
Raise to the power of .
Step 5.2.3.1.7.1.1.2
Raise to the power of .
Step 5.2.3.1.7.1.1.3
Use the power rule to combine exponents.
Step 5.2.3.1.7.1.1.4
Add and .
Step 5.2.3.1.7.1.2
Rewrite as .
Step 5.2.3.1.7.1.3
Move to the left of .
Step 5.2.3.1.7.1.4
Rewrite as .
Step 5.2.3.1.7.1.5
Rewrite as .
Step 5.2.3.1.7.1.6
Multiply by .
Step 5.2.3.1.7.2
Subtract from .
Step 5.2.3.1.8
Apply the distributive property.
Step 5.2.3.1.9
Simplify.
Step 5.2.3.1.9.1
Multiply by .
Step 5.2.3.1.9.2
Multiply by .
Step 5.2.3.2
Simplify terms.
Step 5.2.3.2.1
Combine the opposite terms in .
Step 5.2.3.2.1.1
Add and .
Step 5.2.3.2.1.2
Add and .
Step 5.2.3.2.2
Combine the numerators over the common denominator.
Step 5.2.4
Simplify the numerator.
Step 5.2.4.1
Factor out of .
Step 5.2.4.1.1
Factor out of .
Step 5.2.4.1.2
Factor out of .
Step 5.2.4.1.3
Factor out of .
Step 5.2.4.1.4
Factor out of .
Step 5.2.4.1.5
Factor out of .
Step 5.2.4.2
Use the Binomial Theorem.
Step 5.2.4.3
Simplify each term.
Step 5.2.4.3.1
Rewrite as .
Step 5.2.4.3.2
Rewrite as .
Step 5.2.4.3.3
Multiply by .
Step 5.2.4.3.4
Rewrite as .
Step 5.2.4.3.5
Raise to the power of .
Step 5.2.4.3.6
Multiply by .
Step 5.2.4.3.7
Raise to the power of .
Step 5.2.4.3.8
Multiply by .
Step 5.2.4.3.9
Raise to the power of .
Step 5.2.4.4
Use the Binomial Theorem.
Step 5.2.4.5
Simplify each term.
Step 5.2.4.5.1
Rewrite as .
Step 5.2.4.5.2
Rewrite as .
Step 5.2.4.5.3
Multiply by .
Step 5.2.4.5.4
Raise to the power of .
Step 5.2.4.5.5
Multiply by .
Step 5.2.4.5.6
Raise to the power of .
Step 5.2.4.6
Apply the distributive property.
Step 5.2.4.7
Simplify.
Step 5.2.4.7.1
Multiply by .
Step 5.2.4.7.2
Multiply by .
Step 5.2.4.7.3
Multiply by .
Step 5.2.4.8
Add and .
Step 5.2.4.9
Subtract from .
Step 5.2.4.10
Add and .
Step 5.2.4.11
Subtract from .
Step 5.2.4.12
Add and .
Step 5.2.5
To write as a fraction with a common denominator, multiply by .
Step 5.2.6
Simplify terms.
Step 5.2.6.1
Combine and .
Step 5.2.6.2
Combine the numerators over the common denominator.
Step 5.2.7
Simplify each term.
Step 5.2.7.1
Simplify the numerator.
Step 5.2.7.1.1
Use to rewrite as .
Step 5.2.7.1.2
Use to rewrite as .
Step 5.2.7.1.3
Use to rewrite as .
Step 5.2.7.1.4
Use to rewrite as .
Step 5.2.7.1.5
Use to rewrite as .
Step 5.2.7.1.6
Use to rewrite as .
Step 5.2.7.1.7
Multiply by .
Step 5.2.7.1.8
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.2.7.1.9
Simplify each term.
Step 5.2.7.1.9.1
Multiply by by adding the exponents.
Step 5.2.7.1.9.1.1
Use the power rule to combine exponents.
Step 5.2.7.1.9.1.2
Combine the numerators over the common denominator.
Step 5.2.7.1.9.1.3
Add and .
Step 5.2.7.1.9.1.4
Divide by .
Step 5.2.7.1.9.2
Simplify .
Step 5.2.7.1.9.3
Multiply by .
Step 5.2.7.1.9.4
Multiply by by adding the exponents.
Step 5.2.7.1.9.4.1
Use the power rule to combine exponents.
Step 5.2.7.1.9.4.2
Combine the numerators over the common denominator.
Step 5.2.7.1.9.4.3
Add and .
Step 5.2.7.1.9.5
Rewrite using the commutative property of multiplication.
Step 5.2.7.1.9.6
Multiply by by adding the exponents.
Step 5.2.7.1.9.6.1
Move .
Step 5.2.7.1.9.6.2
Use the power rule to combine exponents.
Step 5.2.7.1.9.6.3
Combine the numerators over the common denominator.
Step 5.2.7.1.9.6.4
Add and .
Step 5.2.7.1.9.7
Rewrite using the commutative property of multiplication.
Step 5.2.7.1.9.8
Multiply by by adding the exponents.
Step 5.2.7.1.9.8.1
Move .
Step 5.2.7.1.9.8.2
Use the power rule to combine exponents.
Step 5.2.7.1.9.8.3
Combine the numerators over the common denominator.
Step 5.2.7.1.9.8.4
Add and .
Step 5.2.7.1.9.9
Rewrite as .
Step 5.2.7.1.9.10
Multiply by .
Step 5.2.7.1.9.11
Rewrite as .
Step 5.2.7.1.9.12
Multiply by .
Step 5.2.7.1.9.13
Multiply by .
Step 5.2.7.1.10
Combine the opposite terms in .
Step 5.2.7.1.10.1
Subtract from .
Step 5.2.7.1.10.2
Add and .
Step 5.2.7.1.11
Subtract from .
Step 5.2.7.1.12
Subtract from .
Step 5.2.7.1.13
Subtract from .
Step 5.2.7.1.14
Add and .
Step 5.2.7.1.15
Subtract from .
Step 5.2.7.1.16
Add and .
Step 5.2.7.1.17
Reorder terms.
Step 5.2.7.1.18
Factor out of .
Step 5.2.7.1.18.1
Factor out of .
Step 5.2.7.1.18.2
Factor out of .
Step 5.2.7.1.18.3
Factor out of .
Step 5.2.7.1.18.4
Factor out of .
Step 5.2.7.1.18.5
Factor out of .
Step 5.2.7.1.18.6
Factor out of .
Step 5.2.7.1.18.7
Factor out of .
Step 5.2.7.2
Cancel the common factor.
Step 5.2.7.3
Divide by .
Step 5.2.8
Simplify by adding terms.
Step 5.2.8.1
Combine the opposite terms in .
Step 5.2.8.1.1
Add and .
Step 5.2.8.1.2
Add and .
Step 5.2.8.2
Add and .
Step 5.2.8.3
Subtract from .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Apply the distributive property.
Step 5.3.3.2
Simplify.
Step 5.3.3.2.1
Cancel the common factor of .
Step 5.3.3.2.1.1
Cancel the common factor.
Step 5.3.3.2.1.2
Rewrite the expression.
Step 5.3.3.2.2
Cancel the common factor of .
Step 5.3.3.2.2.1
Cancel the common factor.
Step 5.3.3.2.2.2
Rewrite the expression.
Step 5.3.3.2.3
Multiply by .
Step 5.3.3.2.4
Multiply by .
Step 5.3.3.2.5
Cancel the common factor of .
Step 5.3.3.2.5.1
Cancel the common factor.
Step 5.3.3.2.5.2
Rewrite the expression.
Step 5.3.3.2.6
Multiply by .
Step 5.3.3.3
Subtract from .
Step 5.3.3.4
Factor using the binomial theorem.
Step 5.3.3.5
Pull terms out from under the radical, assuming real numbers.
Step 5.3.4
Combine the opposite terms in .
Step 5.3.4.1
Subtract from .
Step 5.3.4.2
Add and .
Step 5.4
Since and , then is the inverse of .