Enter a problem...
Algebra Examples
Step 1
Step 1.1
Apply the distributive property.
Step 1.2
Simplify the expression.
Step 1.2.1
Multiply by .
Step 1.2.2
Reorder and .
Step 2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 3
Step 3.1
First, use the positive value of the to find the first solution.
Step 3.2
Multiply both sides by .
Step 3.3
Simplify.
Step 3.3.1
Simplify the left side.
Step 3.3.1.1
Simplify .
Step 3.3.1.1.1
Simplify the numerator.
Step 3.3.1.1.1.1
Apply the distributive property.
Step 3.3.1.1.1.2
Multiply by .
Step 3.3.1.1.1.3
Multiply .
Step 3.3.1.1.1.3.1
Multiply by .
Step 3.3.1.1.1.3.2
Multiply by .
Step 3.3.1.1.1.4
Subtract from .
Step 3.3.1.1.2
Reduce the expression by cancelling the common factors.
Step 3.3.1.1.2.1
Cancel the common factor of .
Step 3.3.1.1.2.1.1
Cancel the common factor.
Step 3.3.1.1.2.1.2
Rewrite the expression.
Step 3.3.1.1.2.2
Reorder and .
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Apply the distributive property.
Step 3.3.2.1.2
Multiply.
Step 3.3.2.1.2.1
Multiply by .
Step 3.3.2.1.2.2
Multiply by .
Step 3.4
Solve for .
Step 3.4.1
Move all terms containing to the left side of the equation.
Step 3.4.1.1
Add to both sides of the equation.
Step 3.4.1.2
Add and .
Step 3.4.2
Move all terms not containing to the right side of the equation.
Step 3.4.2.1
Subtract from both sides of the equation.
Step 3.4.2.2
Subtract from .
Step 3.4.3
Divide each term in by and simplify.
Step 3.4.3.1
Divide each term in by .
Step 3.4.3.2
Simplify the left side.
Step 3.4.3.2.1
Cancel the common factor of .
Step 3.4.3.2.1.1
Cancel the common factor.
Step 3.4.3.2.1.2
Divide by .
Step 3.4.3.3
Simplify the right side.
Step 3.4.3.3.1
Move the negative in front of the fraction.
Step 3.5
Next, use the negative value of the to find the second solution.
Step 3.6
Multiply both sides by .
Step 3.7
Simplify.
Step 3.7.1
Simplify the left side.
Step 3.7.1.1
Simplify .
Step 3.7.1.1.1
Simplify the numerator.
Step 3.7.1.1.1.1
Apply the distributive property.
Step 3.7.1.1.1.2
Multiply by .
Step 3.7.1.1.1.3
Multiply .
Step 3.7.1.1.1.3.1
Multiply by .
Step 3.7.1.1.1.3.2
Multiply by .
Step 3.7.1.1.1.4
Subtract from .
Step 3.7.1.1.2
Reduce the expression by cancelling the common factors.
Step 3.7.1.1.2.1
Cancel the common factor of .
Step 3.7.1.1.2.1.1
Cancel the common factor.
Step 3.7.1.1.2.1.2
Rewrite the expression.
Step 3.7.1.1.2.2
Reorder and .
Step 3.7.2
Simplify the right side.
Step 3.7.2.1
Simplify .
Step 3.7.2.1.1
Apply the distributive property.
Step 3.7.2.1.2
Multiply.
Step 3.7.2.1.2.1
Multiply by .
Step 3.7.2.1.2.2
Multiply by .
Step 3.7.2.1.3
Apply the distributive property.
Step 3.7.2.1.4
Multiply.
Step 3.7.2.1.4.1
Multiply by .
Step 3.7.2.1.4.2
Multiply by .
Step 3.8
Solve for .
Step 3.8.1
Move all terms containing to the left side of the equation.
Step 3.8.1.1
Subtract from both sides of the equation.
Step 3.8.1.2
Subtract from .
Step 3.8.2
Move all terms not containing to the right side of the equation.
Step 3.8.2.1
Subtract from both sides of the equation.
Step 3.8.2.2
Subtract from .
Step 3.8.3
Divide each term in by and simplify.
Step 3.8.3.1
Divide each term in by .
Step 3.8.3.2
Simplify the left side.
Step 3.8.3.2.1
Cancel the common factor of .
Step 3.8.3.2.1.1
Cancel the common factor.
Step 3.8.3.2.1.2
Divide by .
Step 3.8.3.3
Simplify the right side.
Step 3.8.3.3.1
Move the negative in front of the fraction.
Step 3.9
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Exclude the solutions that do not make true.
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Mixed Number Form: