Enter a problem...
Algebra Examples
Step 1
Rewrite the equation as .
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3
Step 3.1
Use to rewrite as .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Multiply the exponents in .
Step 3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.1.2
Simplify.
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify .
Step 3.3.1.1
Reduce the expression by cancelling the common factors.
Step 3.3.1.1.1
Factor out of .
Step 3.3.1.1.2
Factor out of .
Step 3.3.1.1.3
Cancel the common factor.
Step 3.3.1.1.4
Rewrite the expression.
Step 3.3.1.2
Cancel the common factor of and .
Step 3.3.1.2.1
Factor out of .
Step 3.3.1.2.2
Cancel the common factors.
Step 3.3.1.2.2.1
Factor out of .
Step 3.3.1.2.2.2
Cancel the common factor.
Step 3.3.1.2.2.3
Rewrite the expression.
Step 3.3.1.3
Rewrite as .
Step 3.3.1.3.1
Factor the perfect power out of .
Step 3.3.1.3.2
Factor the perfect power out of .
Step 3.3.1.3.3
Rearrange the fraction .
Step 3.3.1.4
Pull terms out from under the radical.
Step 3.3.1.5
Combine and .
Step 3.3.1.6
Use the power rule to distribute the exponent.
Step 3.3.1.6.1
Apply the product rule to .
Step 3.3.1.6.2
Apply the product rule to .
Step 3.3.1.6.3
Apply the product rule to .
Step 3.3.1.6.4
Apply the product rule to .
Step 3.3.1.7
Simplify the numerator.
Step 3.3.1.7.1
Raise to the power of .
Step 3.3.1.7.2
Multiply the exponents in .
Step 3.3.1.7.2.1
Apply the power rule and multiply exponents, .
Step 3.3.1.7.2.2
Multiply by .
Step 3.3.1.7.3
Rewrite as .
Step 3.3.1.7.3.1
Use to rewrite as .
Step 3.3.1.7.3.2
Apply the power rule and multiply exponents, .
Step 3.3.1.7.3.3
Combine and .
Step 3.3.1.7.3.4
Cancel the common factor of .
Step 3.3.1.7.3.4.1
Cancel the common factor.
Step 3.3.1.7.3.4.2
Rewrite the expression.
Step 3.3.1.7.3.5
Simplify.
Step 3.3.1.7.4
Combine exponents.
Step 3.3.1.7.4.1
Multiply by .
Step 3.3.1.7.4.2
Raise to the power of .
Step 3.3.1.7.4.3
Use the power rule to combine exponents.
Step 3.3.1.7.4.4
Add and .
Step 3.3.1.8
Raise to the power of .
Step 4
Step 4.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 4.2
Expand the left side.
Step 4.2.1
Rewrite as .
Step 4.2.2
Rewrite as .
Step 4.2.3
Expand by moving outside the logarithm.
Step 4.2.4
Rewrite as .
Step 4.2.5
Expand by moving outside the logarithm.
Step 4.3
Simplify the left side.
Step 4.3.1
Simplify .
Step 4.3.1.1
Apply the distributive property.
Step 4.3.1.2
Use the quotient property of logarithms, .
Step 4.4
Simplify the left side.
Step 4.4.1
Move .
Step 4.4.2
Reorder and .
Step 4.5
Move all the terms containing a logarithm to the left side of the equation.
Step 4.6
Use the quotient property of logarithms, .
Step 4.7
Simplify each term.
Step 4.7.1
Multiply the numerator by the reciprocal of the denominator.
Step 4.7.2
Combine.
Step 4.7.3
Cancel the common factor of .
Step 4.7.3.1
Cancel the common factor.
Step 4.7.3.2
Rewrite the expression.
Step 4.8
Move all terms not containing to the right side of the equation.
Step 4.8.1
Subtract from both sides of the equation.
Step 4.8.2
Subtract from both sides of the equation.
Step 4.9
Divide each term in by and simplify.
Step 4.9.1
Divide each term in by .
Step 4.9.2
Simplify the left side.
Step 4.9.2.1
Dividing two negative values results in a positive value.
Step 4.9.2.2
Cancel the common factor of .
Step 4.9.2.2.1
Cancel the common factor.
Step 4.9.2.2.2
Divide by .
Step 4.9.3
Simplify the right side.
Step 4.9.3.1
Simplify each term.
Step 4.9.3.1.1
Dividing two negative values results in a positive value.
Step 4.9.3.1.2
Dividing two negative values results in a positive value.