Algebra Examples

Solve Using the Square Root Property 2(5-5x^2)=5
Step 1
Divide each term in by and simplify.
Tap for more steps...
Step 1.1
Divide each term in by .
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.1.1
Cancel the common factor.
Step 1.2.1.2
Divide by .
Step 2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.1
Subtract from both sides of the equation.
Step 2.2
To write as a fraction with a common denominator, multiply by .
Step 2.3
Combine and .
Step 2.4
Combine the numerators over the common denominator.
Step 2.5
Simplify the numerator.
Tap for more steps...
Step 2.5.1
Multiply by .
Step 2.5.2
Subtract from .
Step 2.6
Move the negative in front of the fraction.
Step 3
Divide each term in by and simplify.
Tap for more steps...
Step 3.1
Divide each term in by .
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1
Cancel the common factor.
Step 3.2.1.2
Divide by .
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Multiply the numerator by the reciprocal of the denominator.
Step 3.3.2
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.1
Move the leading negative in into the numerator.
Step 3.3.2.2
Factor out of .
Step 3.3.2.3
Factor out of .
Step 3.3.2.4
Cancel the common factor.
Step 3.3.2.5
Rewrite the expression.
Step 3.3.3
Multiply by .
Step 3.3.4
Multiply by .
Step 3.3.5
Dividing two negative values results in a positive value.
Step 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5
Simplify .
Tap for more steps...
Step 5.1
Rewrite as .
Step 5.2
Any root of is .
Step 5.3
Multiply by .
Step 5.4
Combine and simplify the denominator.
Tap for more steps...
Step 5.4.1
Multiply by .
Step 5.4.2
Raise to the power of .
Step 5.4.3
Raise to the power of .
Step 5.4.4
Use the power rule to combine exponents.
Step 5.4.5
Add and .
Step 5.4.6
Rewrite as .
Tap for more steps...
Step 5.4.6.1
Use to rewrite as .
Step 5.4.6.2
Apply the power rule and multiply exponents, .
Step 5.4.6.3
Combine and .
Step 5.4.6.4
Cancel the common factor of .
Tap for more steps...
Step 5.4.6.4.1
Cancel the common factor.
Step 5.4.6.4.2
Rewrite the expression.
Step 5.4.6.5
Evaluate the exponent.
Step 6
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 6.1
First, use the positive value of the to find the first solution.
Step 6.2
Next, use the negative value of the to find the second solution.
Step 6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 7
The result can be shown in multiple forms.
Exact Form:
Decimal Form: