Algebra Examples

Solve for x (x+1)^2-2=2/x
Step 1
Add to both sides of the equation.
Step 2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
The LCM of one and any expression is the expression.
Step 3
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Reorder factors in .
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.1.1
Cancel the common factor.
Step 3.3.1.2
Rewrite the expression.
Step 4
Solve the equation.
Tap for more steps...
Step 4.1
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 4.1.1
Subtract from both sides of the equation.
Step 4.1.2
Simplify each term.
Tap for more steps...
Step 4.1.2.1
Rewrite as .
Step 4.1.2.2
Expand using the FOIL Method.
Tap for more steps...
Step 4.1.2.2.1
Apply the distributive property.
Step 4.1.2.2.2
Apply the distributive property.
Step 4.1.2.2.3
Apply the distributive property.
Step 4.1.2.3
Simplify and combine like terms.
Tap for more steps...
Step 4.1.2.3.1
Simplify each term.
Tap for more steps...
Step 4.1.2.3.1.1
Multiply by .
Step 4.1.2.3.1.2
Multiply by .
Step 4.1.2.3.1.3
Multiply by .
Step 4.1.2.3.1.4
Multiply by .
Step 4.1.2.3.2
Add and .
Step 4.1.2.4
Apply the distributive property.
Step 4.1.2.5
Simplify.
Tap for more steps...
Step 4.1.2.5.1
Multiply by by adding the exponents.
Tap for more steps...
Step 4.1.2.5.1.1
Multiply by .
Tap for more steps...
Step 4.1.2.5.1.1.1
Raise to the power of .
Step 4.1.2.5.1.1.2
Use the power rule to combine exponents.
Step 4.1.2.5.1.2
Add and .
Step 4.1.2.5.2
Rewrite using the commutative property of multiplication.
Step 4.1.2.5.3
Multiply by .
Step 4.1.2.6
Multiply by by adding the exponents.
Tap for more steps...
Step 4.1.2.6.1
Move .
Step 4.1.2.6.2
Multiply by .
Step 4.1.3
Subtract from .
Step 4.2
Subtract from both sides of the equation.
Step 4.3
Factor the left side of the equation.
Tap for more steps...
Step 4.3.1
Factor out the greatest common factor from each group.
Tap for more steps...
Step 4.3.1.1
Group the first two terms and the last two terms.
Step 4.3.1.2
Factor out the greatest common factor (GCF) from each group.
Step 4.3.2
Factor the polynomial by factoring out the greatest common factor, .
Step 4.3.3
Rewrite as .
Step 4.3.4
Factor.
Tap for more steps...
Step 4.3.4.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4.3.4.2
Remove unnecessary parentheses.
Step 4.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.5
Set equal to and solve for .
Tap for more steps...
Step 4.5.1
Set equal to .
Step 4.5.2
Subtract from both sides of the equation.
Step 4.6
Set equal to and solve for .
Tap for more steps...
Step 4.6.1
Set equal to .
Step 4.6.2
Subtract from both sides of the equation.
Step 4.7
Set equal to and solve for .
Tap for more steps...
Step 4.7.1
Set equal to .
Step 4.7.2
Add to both sides of the equation.
Step 4.8
The final solution is all the values that make true.