Algebra Examples

Solve for x 1/4|x-3|+2<1
Step 1
Write as a piecewise.
Tap for more steps...
Step 1.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 1.2
Add to both sides of the inequality.
Step 1.3
In the piece where is non-negative, remove the absolute value.
Step 1.4
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 1.5
Add to both sides of the inequality.
Step 1.6
In the piece where is negative, remove the absolute value and multiply by .
Step 1.7
Write as a piecewise.
Step 1.8
Simplify .
Tap for more steps...
Step 1.8.1
Simplify each term.
Tap for more steps...
Step 1.8.1.1
Apply the distributive property.
Step 1.8.1.2
Combine and .
Step 1.8.1.3
Combine and .
Step 1.8.1.4
Move the negative in front of the fraction.
Step 1.8.2
To write as a fraction with a common denominator, multiply by .
Step 1.8.3
Combine and .
Step 1.8.4
Combine the numerators over the common denominator.
Step 1.8.5
Simplify the numerator.
Tap for more steps...
Step 1.8.5.1
Multiply by .
Step 1.8.5.2
Add and .
Step 1.9
Simplify .
Tap for more steps...
Step 1.9.1
Simplify each term.
Tap for more steps...
Step 1.9.1.1
Apply the distributive property.
Step 1.9.1.2
Multiply by .
Step 1.9.1.3
Apply the distributive property.
Step 1.9.1.4
Combine and .
Step 1.9.1.5
Combine and .
Step 1.9.2
To write as a fraction with a common denominator, multiply by .
Step 1.9.3
Combine and .
Step 1.9.4
Combine the numerators over the common denominator.
Step 1.9.5
Simplify the numerator.
Tap for more steps...
Step 1.9.5.1
Multiply by .
Step 1.9.5.2
Add and .
Step 2
Solve when .
Tap for more steps...
Step 2.1
Solve for .
Tap for more steps...
Step 2.1.1
Move all terms not containing to the right side of the inequality.
Tap for more steps...
Step 2.1.1.1
Subtract from both sides of the inequality.
Step 2.1.1.2
Write as a fraction with a common denominator.
Step 2.1.1.3
Combine the numerators over the common denominator.
Step 2.1.1.4
Subtract from .
Step 2.1.1.5
Move the negative in front of the fraction.
Step 2.1.2
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
Step 2.2
Find the intersection of and .
No solution
No solution
Step 3
Solve when .
Tap for more steps...
Step 3.1
Solve for .
Tap for more steps...
Step 3.1.1
Move all terms not containing to the right side of the inequality.
Tap for more steps...
Step 3.1.1.1
Subtract from both sides of the inequality.
Step 3.1.1.2
Write as a fraction with a common denominator.
Step 3.1.1.3
Combine the numerators over the common denominator.
Step 3.1.1.4
Subtract from .
Step 3.1.1.5
Move the negative in front of the fraction.
Step 3.1.2
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
Step 3.1.3
Divide each term in by and simplify.
Tap for more steps...
Step 3.1.3.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 3.1.3.2
Simplify the left side.
Tap for more steps...
Step 3.1.3.2.1
Dividing two negative values results in a positive value.
Step 3.1.3.2.2
Divide by .
Step 3.1.3.3
Simplify the right side.
Tap for more steps...
Step 3.1.3.3.1
Divide by .
Step 3.2
Find the intersection of and .
No solution
No solution
Step 4
Find the union of the solutions.
No solution