Algebra Examples

Graph Using a Table of Values f(x)=-5/2(2)^x
Step 1
Substitute for and find the result for .
Step 2
Solve the equation for .
Tap for more steps...
Step 2.1
Remove parentheses.
Step 2.2
Remove parentheses.
Step 2.3
Simplify .
Tap for more steps...
Step 2.3.1
Rewrite the expression using the negative exponent rule .
Step 2.3.2
Raise to the power of .
Step 2.3.3
Multiply .
Tap for more steps...
Step 2.3.3.1
Multiply by .
Step 2.3.3.2
Multiply by .
Step 3
Substitute for and find the result for .
Step 4
Solve the equation for .
Tap for more steps...
Step 4.1
Remove parentheses.
Step 4.2
Remove parentheses.
Step 4.3
Simplify .
Tap for more steps...
Step 4.3.1
Rewrite the expression using the negative exponent rule .
Step 4.3.2
Multiply .
Tap for more steps...
Step 4.3.2.1
Multiply by .
Step 4.3.2.2
Multiply by .
Step 5
Substitute for and find the result for .
Step 6
Solve the equation for .
Tap for more steps...
Step 6.1
Remove parentheses.
Step 6.2
Remove parentheses.
Step 6.3
Simplify .
Tap for more steps...
Step 6.3.1
Anything raised to is .
Step 6.3.2
Multiply by .
Step 7
Substitute for and find the result for .
Step 8
Solve the equation for .
Tap for more steps...
Step 8.1
Remove parentheses.
Step 8.2
Remove parentheses.
Step 8.3
Cancel the common factor of .
Tap for more steps...
Step 8.3.1
Move the leading negative in into the numerator.
Step 8.3.2
Cancel the common factor.
Step 8.3.3
Rewrite the expression.
Step 9
Substitute for and find the result for .
Step 10
Solve the equation for .
Tap for more steps...
Step 10.1
Remove parentheses.
Step 10.2
Remove parentheses.
Step 10.3
Simplify .
Tap for more steps...
Step 10.3.1
Cancel the common factor of .
Tap for more steps...
Step 10.3.1.1
Move the leading negative in into the numerator.
Step 10.3.1.2
Factor out of .
Step 10.3.1.3
Cancel the common factor.
Step 10.3.1.4
Rewrite the expression.
Step 10.3.2
Multiply by .
Step 11
This is a table of possible values to use when graphing the equation.
Step 12