Enter a problem...
Algebra Examples
Step 1
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
Multiply both sides of the equation by .
Step 1.2.3
Simplify both sides of the equation.
Step 1.2.3.1
Simplify the left side.
Step 1.2.3.1.1
Simplify .
Step 1.2.3.1.1.1
Expand using the FOIL Method.
Step 1.2.3.1.1.1.1
Apply the distributive property.
Step 1.2.3.1.1.1.2
Apply the distributive property.
Step 1.2.3.1.1.1.3
Apply the distributive property.
Step 1.2.3.1.1.2
Simplify and combine like terms.
Step 1.2.3.1.1.2.1
Simplify each term.
Step 1.2.3.1.1.2.1.1
Multiply by .
Step 1.2.3.1.1.2.1.2
Move to the left of .
Step 1.2.3.1.1.2.1.3
Multiply by .
Step 1.2.3.1.1.2.2
Subtract from .
Step 1.2.3.1.1.3
Apply the distributive property.
Step 1.2.3.1.1.4
Simplify.
Step 1.2.3.1.1.4.1
Combine and .
Step 1.2.3.1.1.4.2
Cancel the common factor of .
Step 1.2.3.1.1.4.2.1
Factor out of .
Step 1.2.3.1.1.4.2.2
Cancel the common factor.
Step 1.2.3.1.1.4.2.3
Rewrite the expression.
Step 1.2.3.1.1.4.3
Cancel the common factor of .
Step 1.2.3.1.1.4.3.1
Factor out of .
Step 1.2.3.1.1.4.3.2
Cancel the common factor.
Step 1.2.3.1.1.4.3.3
Rewrite the expression.
Step 1.2.3.1.1.5
Apply the distributive property.
Step 1.2.3.1.1.6
Simplify.
Step 1.2.3.1.1.6.1
Cancel the common factor of .
Step 1.2.3.1.1.6.1.1
Cancel the common factor.
Step 1.2.3.1.1.6.1.2
Rewrite the expression.
Step 1.2.3.1.1.6.2
Multiply by .
Step 1.2.3.1.1.6.3
Multiply by .
Step 1.2.3.2
Simplify the right side.
Step 1.2.3.2.1
Multiply by .
Step 1.2.4
Factor using the AC method.
Step 1.2.4.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.2.4.2
Write the factored form using these integers.
Step 1.2.5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 1.2.6
Set equal to and solve for .
Step 1.2.6.1
Set equal to .
Step 1.2.6.2
Add to both sides of the equation.
Step 1.2.7
Set equal to and solve for .
Step 1.2.7.1
Set equal to .
Step 1.2.7.2
Subtract from both sides of the equation.
Step 1.2.8
The final solution is all the values that make true.
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Step 2.2.1
Remove parentheses.
Step 2.2.2
Remove parentheses.
Step 2.2.3
Remove parentheses.
Step 2.2.4
Remove parentheses.
Step 2.2.5
Simplify .
Step 2.2.5.1
Subtract from .
Step 2.2.5.2
Cancel the common factor of .
Step 2.2.5.2.1
Factor out of .
Step 2.2.5.2.2
Cancel the common factor.
Step 2.2.5.2.3
Rewrite the expression.
Step 2.2.5.3
Simplify the expression.
Step 2.2.5.3.1
Add and .
Step 2.2.5.3.2
Multiply by .
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4