Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Multiply both sides of the equation by .
Step 2.3
Simplify both sides of the equation.
Step 2.3.1
Simplify the left side.
Step 2.3.1.1
Simplify .
Step 2.3.1.1.1
Combine and .
Step 2.3.1.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 2.3.1.1.3
Multiply by .
Step 2.3.1.1.4
Cancel the common factor of .
Step 2.3.1.1.4.1
Factor out of .
Step 2.3.1.1.4.2
Factor out of .
Step 2.3.1.1.4.3
Cancel the common factor.
Step 2.3.1.1.4.4
Rewrite the expression.
Step 2.3.1.1.5
Combine and .
Step 2.3.1.1.6
Multiply by .
Step 2.3.1.1.7
Multiply.
Step 2.3.1.1.7.1
Multiply by .
Step 2.3.1.1.7.2
Multiply by .
Step 2.3.1.1.8
Cancel the common factor of .
Step 2.3.1.1.8.1
Cancel the common factor.
Step 2.3.1.1.8.2
Divide by .
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Simplify .
Step 2.3.2.1.1
Combine and .
Step 2.3.2.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 2.3.2.1.3
Multiply by .
Step 2.3.2.1.4
Combine and .
Step 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.5
Simplify .
Step 2.5.1
Rewrite as .
Step 2.5.2
Multiply by .
Step 2.5.3
Combine and simplify the denominator.
Step 2.5.3.1
Multiply by .
Step 2.5.3.2
Raise to the power of .
Step 2.5.3.3
Use the power rule to combine exponents.
Step 2.5.3.4
Add and .
Step 2.5.3.5
Rewrite as .
Step 2.5.3.5.1
Use to rewrite as .
Step 2.5.3.5.2
Apply the power rule and multiply exponents, .
Step 2.5.3.5.3
Combine and .
Step 2.5.3.5.4
Cancel the common factor of .
Step 2.5.3.5.4.1
Cancel the common factor.
Step 2.5.3.5.4.2
Rewrite the expression.
Step 2.5.3.5.5
Simplify.
Step 2.5.4
Simplify the numerator.
Step 2.5.4.1
Rewrite as .
Step 2.5.4.2
Apply the product rule to .
Step 2.5.4.3
Raise to the power of .
Step 2.5.4.4
Rewrite as .
Step 2.5.4.4.1
Factor out of .
Step 2.5.4.4.2
Rewrite as .
Step 2.5.4.4.3
Add parentheses.
Step 2.5.4.5
Pull terms out from under the radical.
Step 2.5.4.6
Combine exponents.
Step 2.5.4.6.1
Combine using the product rule for radicals.
Step 2.5.4.6.2
Multiply by .
Step 2.5.5
Cancel the common factor of and .
Step 2.5.5.1
Factor out of .
Step 2.5.5.2
Cancel the common factors.
Step 2.5.5.2.1
Factor out of .
Step 2.5.5.2.2
Cancel the common factor.
Step 2.5.5.2.3
Rewrite the expression.
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Simplify the numerator.
Step 4.2.3.1
Combine and .
Step 4.2.3.2
Combine and .
Step 4.2.3.3
Combine and .
Step 4.2.3.4
Combine and .
Step 4.2.3.5
Reduce the expression by cancelling the common factors.
Step 4.2.3.5.1
Reduce the expression by cancelling the common factors.
Step 4.2.3.5.1.1
Factor out of .
Step 4.2.3.5.1.2
Factor out of .
Step 4.2.3.5.1.3
Cancel the common factor.
Step 4.2.3.5.1.4
Rewrite the expression.
Step 4.2.3.5.2
Divide by .
Step 4.2.3.6
Combine exponents.
Step 4.2.3.6.1
Multiply by .
Step 4.2.3.6.2
Multiply by by adding the exponents.
Step 4.2.3.6.2.1
Move .
Step 4.2.3.6.2.2
Multiply by .
Step 4.2.3.6.2.2.1
Raise to the power of .
Step 4.2.3.6.2.2.2
Use the power rule to combine exponents.
Step 4.2.3.6.2.3
Add and .
Step 4.2.3.7
Rewrite as .
Step 4.2.3.8
Pull terms out from under the radical, assuming real numbers.
Step 4.2.4
Reduce the expression by cancelling the common factors.
Step 4.2.4.1
Cancel the common factor of .
Step 4.2.4.1.1
Cancel the common factor.
Step 4.2.4.1.2
Rewrite the expression.
Step 4.2.4.2
Cancel the common factor of .
Step 4.2.4.2.1
Cancel the common factor.
Step 4.2.4.2.2
Divide by .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Use the power rule to distribute the exponent.
Step 4.3.3.1
Apply the product rule to .
Step 4.3.3.2
Apply the product rule to .
Step 4.3.4
Rewrite as .
Step 4.3.4.1
Use to rewrite as .
Step 4.3.4.2
Apply the power rule and multiply exponents, .
Step 4.3.4.3
Combine and .
Step 4.3.4.4
Cancel the common factor of .
Step 4.3.4.4.1
Cancel the common factor.
Step 4.3.4.4.2
Rewrite the expression.
Step 4.3.4.5
Simplify.
Step 4.3.5
Raise to the power of .
Step 4.3.6
Cancel the common factor of .
Step 4.3.6.1
Factor out of .
Step 4.3.6.2
Cancel the common factor.
Step 4.3.6.3
Rewrite the expression.
Step 4.3.7
Combine.
Step 4.3.8
Cancel the common factors.
Step 4.3.8.1
Factor out of .
Step 4.3.8.2
Cancel the common factor.
Step 4.3.8.3
Rewrite the expression.
Step 4.3.9
Cancel the common factor of and .
Step 4.3.9.1
Factor out of .
Step 4.3.9.2
Cancel the common factors.
Step 4.3.9.2.1
Cancel the common factor.
Step 4.3.9.2.2
Rewrite the expression.
Step 4.3.10
Cancel the common factor of .
Step 4.3.10.1
Cancel the common factor.
Step 4.3.10.2
Rewrite the expression.
Step 4.3.11
Cancel the common factor of .
Step 4.3.11.1
Cancel the common factor.
Step 4.3.11.2
Divide by .
Step 4.4
Since and , then is the inverse of .