Enter a problem...
Algebra Examples
Step 1
Since the radical is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 2
To remove the radical on the left side of the inequality, square both sides of the inequality.
Step 3
Step 3.1
Use to rewrite as .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Multiply the exponents in .
Step 3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.1.2
Simplify.
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify .
Step 3.3.1.1
Apply the product rule to .
Step 3.3.1.2
One to any power is one.
Step 3.3.1.3
Apply the product rule to .
Step 3.3.1.4
One to any power is one.
Step 3.3.1.5
Multiply the exponents in .
Step 3.3.1.5.1
Apply the power rule and multiply exponents, .
Step 3.3.1.5.2
Apply the distributive property.
Step 3.3.1.5.3
Multiply by .
Step 3.3.1.5.4
Multiply by .
Step 4
Step 4.1
Take the log of both sides of the inequality.
Step 4.2
Rewrite as .
Step 4.3
Expand by moving outside the logarithm.
Step 4.4
Remove parentheses.
Step 4.5
Rewrite as .
Step 4.6
Expand by moving outside the logarithm.
Step 4.7
The natural logarithm of is .
Step 4.8
Subtract from .
Step 4.9
Remove parentheses.
Step 4.10
Solve the inequality for .
Step 4.10.1
Simplify the left side.
Step 4.10.1.1
Simplify each term.
Step 4.10.1.1.1
Apply the distributive property.
Step 4.10.1.1.2
Multiply by .
Step 4.10.1.1.3
Apply the distributive property.
Step 4.10.1.1.4
Multiply by .
Step 4.10.1.2
Use the product property of logarithms, .
Step 4.10.1.3
Multiply by .
Step 4.10.2
Simplify the right side.
Step 4.10.2.1
Apply the distributive property.
Step 4.10.2.2
Multiply.
Step 4.10.2.2.1
Multiply by .
Step 4.10.2.2.2
Multiply by .
Step 4.10.2.3
Apply the distributive property.
Step 4.10.3
Simplify the right side.
Step 4.10.3.1
Simplify .
Step 4.10.3.1.1
Simplify each term.
Step 4.10.3.1.1.1
Simplify by moving inside the logarithm.
Step 4.10.3.1.1.2
Raise to the power of .
Step 4.10.3.1.1.3
Simplify by moving inside the logarithm.
Step 4.10.3.1.1.4
Raise to the power of .
Step 4.10.3.1.2
Reorder factors in .
Step 4.10.4
Move all the terms containing a logarithm to the left side of the equation.
Step 4.10.5
Use the product property of logarithms, .
Step 4.10.6
Multiply by .
Step 4.10.7
Subtract from both sides of the equation.
Step 4.10.8
Factor out of .
Step 4.10.8.1
Factor out of .
Step 4.10.8.2
Factor out of .
Step 4.10.8.3
Factor out of .
Step 4.10.9
Rewrite as .
Step 4.10.10
Divide each term in by and simplify.
Step 4.10.10.1
Divide each term in by .
Step 4.10.10.2
Simplify the left side.
Step 4.10.10.2.1
Cancel the common factor of .
Step 4.10.10.2.1.1
Cancel the common factor.
Step 4.10.10.2.1.2
Divide by .
Step 4.10.10.3
Simplify the right side.
Step 4.10.10.3.1
Move the negative in front of the fraction.
Step 4.10.10.3.2
Factor out of .
Step 4.10.10.3.3
Factor out of .
Step 4.10.10.3.4
Factor out of .
Step 4.10.10.3.5
Simplify the expression.
Step 4.10.10.3.5.1
Rewrite as .
Step 4.10.10.3.5.2
Move the negative in front of the fraction.
Step 4.10.10.3.5.3
Multiply by .
Step 4.10.10.3.5.4
Multiply by .
Step 5
The solution consists of all of the true intervals.
Step 6
The result can be shown in multiple forms.
Inequality Form:
Interval Notation:
Step 7