Enter a problem...
Algebra Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Add to both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Simplify.
Step 2.2.1.1.2.1
Multiply by .
Step 2.2.1.1.2.2
Multiply by .
Step 2.2.1.2
Simplify by adding terms.
Step 2.2.1.2.1
Subtract from .
Step 2.2.1.2.2
Add and .
Step 2.3
Replace all occurrences of in with .
Step 2.4
Simplify the left side.
Step 2.4.1
Simplify .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Apply the distributive property.
Step 2.4.1.1.2
Simplify.
Step 2.4.1.1.2.1
Multiply by .
Step 2.4.1.1.2.2
Multiply by .
Step 2.4.1.2
Simplify by adding terms.
Step 2.4.1.2.1
Subtract from .
Step 2.4.1.2.2
Add and .
Step 3
Step 3.1
Move all terms not containing to the right side of the equation.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from both sides of the equation.
Step 3.1.3
Subtract from .
Step 3.2
Divide each term in by and simplify.
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of .
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Simplify each term.
Step 3.2.3.1.1
Dividing two negative values results in a positive value.
Step 3.2.3.1.2
Dividing two negative values results in a positive value.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Multiply .
Step 4.2.1.1.2.1
Combine and .
Step 4.2.1.1.2.2
Multiply by .
Step 4.2.1.1.3
Multiply .
Step 4.2.1.1.3.1
Combine and .
Step 4.2.1.1.3.2
Multiply by .
Step 4.2.1.1.4
Simplify each term.
Step 4.2.1.1.4.1
Move the negative in front of the fraction.
Step 4.2.1.1.4.2
Move the negative in front of the fraction.
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Combine and .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 4.2.1.5
Combine the numerators over the common denominator.
Step 4.2.1.6
Multiply by .
Step 4.2.1.7
Add and .
Step 4.2.1.8
Factor out of .
Step 4.2.1.8.1
Factor out of .
Step 4.2.1.8.2
Factor out of .
Step 4.2.1.8.3
Factor out of .
Step 4.2.1.9
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.10
Simplify terms.
Step 4.2.1.10.1
Combine and .
Step 4.2.1.10.2
Combine the numerators over the common denominator.
Step 4.2.1.11
Simplify the numerator.
Step 4.2.1.11.1
Factor out of .
Step 4.2.1.11.1.1
Factor out of .
Step 4.2.1.11.1.2
Factor out of .
Step 4.2.1.11.2
Multiply by .
Step 4.2.1.11.3
Subtract from .
Step 4.2.1.12
Simplify with factoring out.
Step 4.2.1.12.1
Factor out of .
Step 4.2.1.12.2
Rewrite as .
Step 4.2.1.12.3
Factor out of .
Step 4.2.1.12.4
Simplify the expression.
Step 4.2.1.12.4.1
Rewrite as .
Step 4.2.1.12.4.2
Move the negative in front of the fraction.
Step 4.3
Replace all occurrences of in with .
Step 4.4
Simplify the right side.
Step 4.4.1
Simplify .
Step 4.4.1.1
Simplify each term.
Step 4.4.1.1.1
Apply the distributive property.
Step 4.4.1.1.2
Multiply .
Step 4.4.1.1.2.1
Combine and .
Step 4.4.1.1.2.2
Multiply by .
Step 4.4.1.1.3
Multiply .
Step 4.4.1.1.3.1
Combine and .
Step 4.4.1.1.3.2
Multiply by .
Step 4.4.1.1.4
Simplify each term.
Step 4.4.1.1.4.1
Move the negative in front of the fraction.
Step 4.4.1.1.4.2
Move the negative in front of the fraction.
Step 4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.3
Combine and .
Step 4.4.1.4
Combine the numerators over the common denominator.
Step 4.4.1.5
Simplify the numerator.
Step 4.4.1.5.1
Multiply by .
Step 4.4.1.5.2
Subtract from .
Step 4.4.1.6
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.7
Simplify terms.
Step 4.4.1.7.1
Combine and .
Step 4.4.1.7.2
Combine the numerators over the common denominator.
Step 4.4.1.7.3
Combine the numerators over the common denominator.
Step 4.4.1.8
Move to the left of .
Step 4.4.1.9
Simplify terms.
Step 4.4.1.9.1
Add and .
Step 4.4.1.9.2
Factor out of .
Step 4.4.1.9.3
Rewrite as .
Step 4.4.1.9.4
Factor out of .
Step 4.4.1.9.5
Simplify the expression.
Step 4.4.1.9.5.1
Rewrite as .
Step 4.4.1.9.5.2
Move the negative in front of the fraction.
Step 5
Step 5.1
Set the numerator equal to zero.
Step 5.2
Solve the equation for .
Step 5.2.1
Divide each term in by and simplify.
Step 5.2.1.1
Divide each term in by .
Step 5.2.1.2
Simplify the left side.
Step 5.2.1.2.1
Cancel the common factor of .
Step 5.2.1.2.1.1
Cancel the common factor.
Step 5.2.1.2.1.2
Divide by .
Step 5.2.1.3
Simplify the right side.
Step 5.2.1.3.1
Divide by .
Step 5.2.2
Add to both sides of the equation.
Step 6
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify .
Step 6.2.1.1
Simplify the numerator.
Step 6.2.1.1.1
Multiply by .
Step 6.2.1.1.2
Subtract from .
Step 6.2.1.2
Reduce the expression by cancelling the common factors.
Step 6.2.1.2.1
Cancel the common factor of .
Step 6.2.1.2.1.1
Cancel the common factor.
Step 6.2.1.2.1.2
Rewrite the expression.
Step 6.2.1.2.2
Multiply by .
Step 6.3
Replace all occurrences of in with .
Step 6.4
Simplify the right side.
Step 6.4.1
Simplify .
Step 6.4.1.1
Combine the numerators over the common denominator.
Step 6.4.1.2
Simplify the expression.
Step 6.4.1.2.1
Multiply by .
Step 6.4.1.2.2
Add and .
Step 6.4.1.2.3
Divide by .
Step 7
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 8
The result can be shown in multiple forms.
Point Form:
Equation Form: