Enter a problem...
Algebra Examples
Step 1
Step 1.1
Move all terms not containing to the right side of the equation.
Step 1.1.1
Subtract from both sides of the equation.
Step 1.1.2
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Divide by .
Step 1.2.3.1.2
Cancel the common factor of and .
Step 1.2.3.1.2.1
Factor out of .
Step 1.2.3.1.2.2
Cancel the common factors.
Step 1.2.3.1.2.2.1
Factor out of .
Step 1.2.3.1.2.2.2
Cancel the common factor.
Step 1.2.3.1.2.2.3
Rewrite the expression.
Step 1.2.3.1.2.2.4
Divide by .
Step 1.2.3.1.3
Move the negative in front of the fraction.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Simplify.
Step 2.2.1.1.2.1
Multiply by .
Step 2.2.1.1.2.2
Multiply by .
Step 2.2.1.1.2.3
Multiply .
Step 2.2.1.1.2.3.1
Multiply by .
Step 2.2.1.1.2.3.2
Combine and .
Step 2.2.1.1.2.3.3
Multiply by .
Step 2.2.1.1.3
Move the negative in front of the fraction.
Step 2.2.1.2
Add and .
Step 2.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.4
Simplify terms.
Step 2.2.1.4.1
Combine and .
Step 2.2.1.4.2
Combine the numerators over the common denominator.
Step 2.2.1.5
Simplify each term.
Step 2.2.1.5.1
Simplify the numerator.
Step 2.2.1.5.1.1
Factor out of .
Step 2.2.1.5.1.1.1
Factor out of .
Step 2.2.1.5.1.1.2
Factor out of .
Step 2.2.1.5.1.1.3
Factor out of .
Step 2.2.1.5.1.2
Add and .
Step 2.2.1.5.1.3
Multiply by .
Step 2.2.1.5.2
Move the negative in front of the fraction.
Step 2.3
Replace all occurrences of in with .
Step 2.4
Simplify the left side.
Step 2.4.1
Simplify .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Apply the distributive property.
Step 2.4.1.1.2
Simplify.
Step 2.4.1.1.2.1
Multiply by .
Step 2.4.1.1.2.2
Multiply by .
Step 2.4.1.1.2.3
Multiply .
Step 2.4.1.1.2.3.1
Multiply by .
Step 2.4.1.1.2.3.2
Combine and .
Step 2.4.1.1.2.3.3
Multiply by .
Step 2.4.1.1.3
Move the negative in front of the fraction.
Step 2.4.1.2
Add and .
Step 2.4.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.4.1.4
Simplify terms.
Step 2.4.1.4.1
Combine and .
Step 2.4.1.4.2
Combine the numerators over the common denominator.
Step 2.4.1.5
Simplify the numerator.
Step 2.4.1.5.1
Factor out of .
Step 2.4.1.5.1.1
Factor out of .
Step 2.4.1.5.1.2
Factor out of .
Step 2.4.1.5.1.3
Factor out of .
Step 2.4.1.5.2
Multiply by .
Step 2.4.1.5.3
Add and .
Step 2.4.1.5.4
Multiply by .
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Subtract from .
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Multiply by .
Step 4.2.1.1.3
Cancel the common factor of .
Step 4.2.1.1.3.1
Move the leading negative in into the numerator.
Step 4.2.1.1.3.2
Factor out of .
Step 4.2.1.1.3.3
Cancel the common factor.
Step 4.2.1.1.3.4
Rewrite the expression.
Step 4.2.1.1.4
Multiply by .
Step 4.2.1.2
Add and .
Step 4.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.4
Simplify terms.
Step 4.2.1.4.1
Combine and .
Step 4.2.1.4.2
Combine the numerators over the common denominator.
Step 4.2.1.5
Simplify each term.
Step 4.2.1.5.1
Simplify the numerator.
Step 4.2.1.5.1.1
Factor out of .
Step 4.2.1.5.1.1.1
Factor out of .
Step 4.2.1.5.1.1.2
Factor out of .
Step 4.2.1.5.1.1.3
Factor out of .
Step 4.2.1.5.1.2
Multiply by .
Step 4.2.1.5.1.3
Subtract from .
Step 4.2.1.5.2
Multiply by .
Step 4.3
Replace all occurrences of in with .
Step 4.4
Simplify the right side.
Step 4.4.1
Simplify .
Step 4.4.1.1
Find the common denominator.
Step 4.4.1.1.1
Write as a fraction with denominator .
Step 4.4.1.1.2
Multiply by .
Step 4.4.1.1.3
Multiply by .
Step 4.4.1.1.4
Write as a fraction with denominator .
Step 4.4.1.1.5
Multiply by .
Step 4.4.1.1.6
Multiply by .
Step 4.4.1.2
Combine the numerators over the common denominator.
Step 4.4.1.3
Simplify each term.
Step 4.4.1.3.1
Multiply by .
Step 4.4.1.3.2
Apply the distributive property.
Step 4.4.1.3.3
Multiply by .
Step 4.4.1.3.4
Multiply .
Step 4.4.1.3.4.1
Multiply by .
Step 4.4.1.3.4.2
Multiply by .
Step 4.4.1.3.5
Apply the distributive property.
Step 4.4.1.3.6
Multiply by .
Step 4.4.1.3.7
Cancel the common factor of .
Step 4.4.1.3.7.1
Cancel the common factor.
Step 4.4.1.3.7.2
Rewrite the expression.
Step 4.4.1.4
Simplify by adding terms.
Step 4.4.1.4.1
Combine the opposite terms in .
Step 4.4.1.4.1.1
Subtract from .
Step 4.4.1.4.1.2
Add and .
Step 4.4.1.4.2
Simplify the expression.
Step 4.4.1.4.2.1
Add and .
Step 4.4.1.4.2.2
Divide by .
Step 5
Step 5.1
Move all terms not containing to the right side of the equation.
Step 5.1.1
Subtract from both sides of the equation.
Step 5.1.2
Subtract from .
Step 5.2
Multiply both sides of the equation by .
Step 5.3
Simplify both sides of the equation.
Step 5.3.1
Simplify the left side.
Step 5.3.1.1
Cancel the common factor of .
Step 5.3.1.1.1
Cancel the common factor.
Step 5.3.1.1.2
Rewrite the expression.
Step 5.3.2
Simplify the right side.
Step 5.3.2.1
Multiply by .
Step 6
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify .
Step 6.2.1.1
Simplify each term.
Step 6.2.1.1.1
Cancel the common factor of and .
Step 6.2.1.1.1.1
Factor out of .
Step 6.2.1.1.1.2
Cancel the common factors.
Step 6.2.1.1.1.2.1
Factor out of .
Step 6.2.1.1.1.2.2
Cancel the common factor.
Step 6.2.1.1.1.2.3
Rewrite the expression.
Step 6.2.1.1.1.2.4
Divide by .
Step 6.2.1.1.2
Multiply .
Step 6.2.1.1.2.1
Multiply by .
Step 6.2.1.1.2.2
Multiply by .
Step 6.2.1.2
Add and .
Step 7
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 8
The result can be shown in multiple forms.
Point Form:
Equation Form: