Algebra Examples

Find the x and y Intercepts f(x)=4x-8x^3-x^2
Step 1
Find the x-intercepts.
Tap for more steps...
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Tap for more steps...
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
Factor out of .
Tap for more steps...
Step 1.2.2.1
Move .
Step 1.2.2.2
Factor out of .
Step 1.2.2.3
Factor out of .
Step 1.2.2.4
Factor out of .
Step 1.2.2.5
Factor out of .
Step 1.2.2.6
Factor out of .
Step 1.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 1.2.4
Set equal to .
Step 1.2.5
Set equal to and solve for .
Tap for more steps...
Step 1.2.5.1
Set equal to .
Step 1.2.5.2
Solve for .
Tap for more steps...
Step 1.2.5.2.1
Use the quadratic formula to find the solutions.
Step 1.2.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.5.2.3
Simplify.
Tap for more steps...
Step 1.2.5.2.3.1
Simplify the numerator.
Tap for more steps...
Step 1.2.5.2.3.1.1
One to any power is one.
Step 1.2.5.2.3.1.2
Multiply .
Tap for more steps...
Step 1.2.5.2.3.1.2.1
Multiply by .
Step 1.2.5.2.3.1.2.2
Multiply by .
Step 1.2.5.2.3.1.3
Add and .
Step 1.2.5.2.3.2
Multiply by .
Step 1.2.5.2.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.2.5.2.4.1
Simplify the numerator.
Tap for more steps...
Step 1.2.5.2.4.1.1
One to any power is one.
Step 1.2.5.2.4.1.2
Multiply .
Tap for more steps...
Step 1.2.5.2.4.1.2.1
Multiply by .
Step 1.2.5.2.4.1.2.2
Multiply by .
Step 1.2.5.2.4.1.3
Add and .
Step 1.2.5.2.4.2
Multiply by .
Step 1.2.5.2.4.3
Change the to .
Step 1.2.5.2.4.4
Rewrite as .
Step 1.2.5.2.4.5
Factor out of .
Step 1.2.5.2.4.6
Factor out of .
Step 1.2.5.2.4.7
Move the negative in front of the fraction.
Step 1.2.5.2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.2.5.2.5.1
Simplify the numerator.
Tap for more steps...
Step 1.2.5.2.5.1.1
One to any power is one.
Step 1.2.5.2.5.1.2
Multiply .
Tap for more steps...
Step 1.2.5.2.5.1.2.1
Multiply by .
Step 1.2.5.2.5.1.2.2
Multiply by .
Step 1.2.5.2.5.1.3
Add and .
Step 1.2.5.2.5.2
Multiply by .
Step 1.2.5.2.5.3
Change the to .
Step 1.2.5.2.5.4
Rewrite as .
Step 1.2.5.2.5.5
Factor out of .
Step 1.2.5.2.5.6
Factor out of .
Step 1.2.5.2.5.7
Move the negative in front of the fraction.
Step 1.2.5.2.6
The final answer is the combination of both solutions.
Step 1.2.6
The final solution is all the values that make true.
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Find the y-intercepts.
Tap for more steps...
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Tap for more steps...
Step 2.2.1
Remove parentheses.
Step 2.2.2
Remove parentheses.
Step 2.2.3
Remove parentheses.
Step 2.2.4
Simplify .
Tap for more steps...
Step 2.2.4.1
Simplify each term.
Tap for more steps...
Step 2.2.4.1.1
Multiply by .
Step 2.2.4.1.2
Raising to any positive power yields .
Step 2.2.4.1.3
Multiply by .
Step 2.2.4.1.4
Raising to any positive power yields .
Step 2.2.4.1.5
Multiply by .
Step 2.2.4.2
Simplify by adding numbers.
Tap for more steps...
Step 2.2.4.2.1
Add and .
Step 2.2.4.2.2
Add and .
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4