Algebra Examples

Convert to Interval Notation 1/2+12/(x^2)>5/x
Step 1
Multiply both sides by .
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Simplify .
Tap for more steps...
Step 2.1.1.1
Apply the distributive property.
Step 2.1.1.2
Combine and .
Step 2.1.1.3
Cancel the common factor of .
Tap for more steps...
Step 2.1.1.3.1
Factor out of .
Step 2.1.1.3.2
Cancel the common factor.
Step 2.1.1.3.3
Rewrite the expression.
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Rewrite the expression.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Find the LCD of the terms in the equation.
Tap for more steps...
Step 3.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 3.1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Step 3.1.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 3.1.4
Since has no factors besides and .
is a prime number
Step 3.1.5
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 3.1.6
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 3.1.7
The factor for is itself.
occurs time.
Step 3.1.8
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either term.
Step 3.1.9
The LCM for is the numeric part multiplied by the variable part.
Step 3.2
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 3.2.1
Multiply each term in by .
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Simplify each term.
Tap for more steps...
Step 3.2.2.1.1
Rewrite using the commutative property of multiplication.
Step 3.2.2.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.1.2.1
Cancel the common factor.
Step 3.2.2.1.2.2
Rewrite the expression.
Step 3.2.2.1.3
Multiply by .
Step 3.2.2.1.4
Rewrite using the commutative property of multiplication.
Step 3.2.2.1.5
Multiply .
Tap for more steps...
Step 3.2.2.1.5.1
Combine and .
Step 3.2.2.1.5.2
Multiply by .
Step 3.2.2.1.6
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.1.6.1
Cancel the common factor.
Step 3.2.2.1.6.2
Rewrite the expression.
Step 3.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.3.1
Multiply by .
Step 3.3
Solve the equation.
Tap for more steps...
Step 3.3.1
Subtract from both sides of the equation.
Step 3.3.2
Factor using the AC method.
Tap for more steps...
Step 3.3.2.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 3.3.2.2
Write the factored form using these integers.
Step 3.3.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.3.4
Set equal to and solve for .
Tap for more steps...
Step 3.3.4.1
Set equal to .
Step 3.3.4.2
Add to both sides of the equation.
Step 3.3.5
Set equal to and solve for .
Tap for more steps...
Step 3.3.5.1
Set equal to .
Step 3.3.5.2
Add to both sides of the equation.
Step 3.3.6
The final solution is all the values that make true.
Step 4
Find the domain of .
Tap for more steps...
Step 4.1
Set the denominator in equal to to find where the expression is undefined.
Step 4.2
Solve for .
Tap for more steps...
Step 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4.2.2
Simplify .
Tap for more steps...
Step 4.2.2.1
Rewrite as .
Step 4.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 4.2.2.3
Plus or minus is .
Step 4.3
The domain is all values of that make the expression defined.
Step 5
Use each root to create test intervals.
Step 6
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 6.1
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 6.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.1.2
Replace with in the original inequality.
Step 6.1.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 6.2
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 6.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.2.2
Replace with in the original inequality.
Step 6.2.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 6.3
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 6.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.3.2
Replace with in the original inequality.
Step 6.3.3
The left side is not greater than the right side , which means that the given statement is false.
False
False
Step 6.4
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 6.4.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.4.2
Replace with in the original inequality.
Step 6.4.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 6.5
Compare the intervals to determine which ones satisfy the original inequality.
True
True
False
True
True
True
False
True
Step 7
The solution consists of all of the true intervals.
or or
Step 8
Convert the inequality to interval notation.
Step 9