Enter a problem...
Algebra Examples
Step 1
Step 1.1
Simplify .
Step 1.1.1
Remove parentheses.
Step 1.1.2
Subtract from .
Step 2
Step 2.1
Rewrite as .
Step 2.2
Expand using the FOIL Method.
Step 2.2.1
Apply the distributive property.
Step 2.2.2
Apply the distributive property.
Step 2.2.3
Apply the distributive property.
Step 2.3
Simplify and combine like terms.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Multiply by by adding the exponents.
Step 2.3.1.1.1
Use the power rule to combine exponents.
Step 2.3.1.1.2
Add and .
Step 2.3.1.2
Move to the left of .
Step 2.3.1.3
Multiply by .
Step 2.3.2
Add and .
Step 2.4
Add and .
Step 2.5
Subtract from .
Step 2.6
Add and .
Step 2.7
Factor out of .
Step 2.7.1
Factor out of .
Step 2.7.2
Factor out of .
Step 2.7.3
Factor out of .
Step 3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4
Step 4.1
Set equal to .
Step 4.2
Solve for .
Step 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4.2.2
Simplify .
Step 4.2.2.1
Rewrite as .
Step 4.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 4.2.2.3
Plus or minus is .
Step 5
Step 5.1
Set equal to .
Step 5.2
Solve for .
Step 5.2.1
Subtract from both sides of the equation.
Step 5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.2.3
Simplify .
Step 5.2.3.1
Rewrite as .
Step 5.2.3.2
Rewrite as .
Step 5.2.3.3
Rewrite as .
Step 5.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 5.2.4.1
First, use the positive value of the to find the first solution.
Step 5.2.4.2
Next, use the negative value of the to find the second solution.
Step 5.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 6
The final solution is all the values that make true.