Algebra Examples

Solve for x |x|>x-1
Step 1
Write as a piecewise.
Tap for more steps...
Step 1.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 1.2
In the piece where is non-negative, remove the absolute value.
Step 1.3
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 1.4
In the piece where is negative, remove the absolute value and multiply by .
Step 1.5
Write as a piecewise.
Step 2
Solve when .
Tap for more steps...
Step 2.1
Solve for .
Tap for more steps...
Step 2.1.1
Move all terms containing to the left side of the inequality.
Tap for more steps...
Step 2.1.1.1
Subtract from both sides of the inequality.
Step 2.1.1.2
Subtract from .
Step 2.1.2
Since , the inequality will always be true.
Always true
Always true
Step 2.2
Find the intersection.
Step 3
Solve when .
Tap for more steps...
Step 3.1
Solve for .
Tap for more steps...
Step 3.1.1
Move all terms containing to the left side of the inequality.
Tap for more steps...
Step 3.1.1.1
Subtract from both sides of the inequality.
Step 3.1.1.2
Subtract from .
Step 3.1.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.1.2.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 3.1.2.2
Simplify the left side.
Tap for more steps...
Step 3.1.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.1.2.2.1.1
Cancel the common factor.
Step 3.1.2.2.1.2
Divide by .
Step 3.1.2.3
Simplify the right side.
Tap for more steps...
Step 3.1.2.3.1
Dividing two negative values results in a positive value.
Step 3.2
Find the intersection of and .
Step 4
Find the union of the solutions for any value of .
All real numbers
Step 5
The result can be shown in multiple forms.
All real numbers
Interval Notation:
Step 6