Enter a problem...
Algebra Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Add to both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Simplify.
Step 2.2.1.1.2.1
Multiply by .
Step 2.2.1.1.2.2
Multiply by .
Step 2.2.1.1.2.3
Multiply by .
Step 2.2.1.2
Simplify by adding terms.
Step 2.2.1.2.1
Add and .
Step 2.2.1.2.2
Subtract from .
Step 2.3
Replace all occurrences of in with .
Step 2.4
Simplify the left side.
Step 2.4.1
Simplify .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Apply the distributive property.
Step 2.4.1.1.2
Simplify.
Step 2.4.1.1.2.1
Multiply by .
Step 2.4.1.1.2.2
Multiply by .
Step 2.4.1.1.2.3
Multiply by .
Step 2.4.1.2
Simplify by adding terms.
Step 2.4.1.2.1
Add and .
Step 2.4.1.2.2
Subtract from .
Step 3
Step 3.1
Move all terms not containing to the right side of the equation.
Step 3.1.1
Add to both sides of the equation.
Step 3.1.2
Subtract from both sides of the equation.
Step 3.1.3
Subtract from .
Step 3.2
Divide each term in by and simplify.
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of .
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Move the negative in front of the fraction.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Multiply .
Step 4.2.1.1.2.1
Combine and .
Step 4.2.1.1.2.2
Multiply by .
Step 4.2.1.1.3
Multiply .
Step 4.2.1.1.3.1
Multiply by .
Step 4.2.1.1.3.2
Combine and .
Step 4.2.1.1.3.3
Multiply by .
Step 4.2.1.1.4
Move the negative in front of the fraction.
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Combine and .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 4.2.1.5
Combine the numerators over the common denominator.
Step 4.2.1.6
Multiply by .
Step 4.2.1.7
Subtract from .
Step 4.2.1.8
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.9
Simplify terms.
Step 4.2.1.9.1
Combine and .
Step 4.2.1.9.2
Combine the numerators over the common denominator.
Step 4.2.1.10
Simplify the numerator.
Step 4.2.1.10.1
Multiply by .
Step 4.2.1.10.2
Subtract from .
Step 4.2.1.10.3
Factor out of .
Step 4.2.1.10.3.1
Factor out of .
Step 4.2.1.10.3.2
Factor out of .
Step 4.2.1.10.3.3
Factor out of .
Step 4.2.1.11
Simplify with factoring out.
Step 4.2.1.11.1
Factor out of .
Step 4.2.1.11.2
Rewrite as .
Step 4.2.1.11.3
Factor out of .
Step 4.2.1.11.4
Simplify the expression.
Step 4.2.1.11.4.1
Rewrite as .
Step 4.2.1.11.4.2
Move the negative in front of the fraction.
Step 4.3
Replace all occurrences of in with .
Step 4.4
Simplify the right side.
Step 4.4.1
Simplify .
Step 4.4.1.1
Simplify each term.
Step 4.4.1.1.1
Apply the distributive property.
Step 4.4.1.1.2
Multiply .
Step 4.4.1.1.2.1
Combine and .
Step 4.4.1.1.2.2
Multiply by .
Step 4.4.1.1.3
Multiply .
Step 4.4.1.1.3.1
Multiply by .
Step 4.4.1.1.3.2
Combine and .
Step 4.4.1.1.3.3
Multiply by .
Step 4.4.1.1.4
Move the negative in front of the fraction.
Step 4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.3
Combine and .
Step 4.4.1.4
Combine the numerators over the common denominator.
Step 4.4.1.5
Simplify the numerator.
Step 4.4.1.5.1
Multiply by .
Step 4.4.1.5.2
Add and .
Step 4.4.1.6
Move the negative in front of the fraction.
Step 4.4.1.7
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.8
Combine and .
Step 4.4.1.9
Combine the numerators over the common denominator.
Step 4.4.1.10
Combine the numerators over the common denominator.
Step 4.4.1.11
Multiply by .
Step 4.4.1.12
Add and .
Step 5
Step 5.1
Multiply both sides of the equation by .
Step 5.2
Simplify both sides of the equation.
Step 5.2.1
Simplify the left side.
Step 5.2.1.1
Simplify .
Step 5.2.1.1.1
Cancel the common factor of .
Step 5.2.1.1.1.1
Move the leading negative in into the numerator.
Step 5.2.1.1.1.2
Move the leading negative in into the numerator.
Step 5.2.1.1.1.3
Factor out of .
Step 5.2.1.1.1.4
Cancel the common factor.
Step 5.2.1.1.1.5
Rewrite the expression.
Step 5.2.1.1.2
Cancel the common factor of .
Step 5.2.1.1.2.1
Factor out of .
Step 5.2.1.1.2.2
Cancel the common factor.
Step 5.2.1.1.2.3
Rewrite the expression.
Step 5.2.1.1.3
Multiply.
Step 5.2.1.1.3.1
Multiply by .
Step 5.2.1.1.3.2
Multiply by .
Step 5.2.2
Simplify the right side.
Step 5.2.2.1
Simplify .
Step 5.2.2.1.1
Multiply .
Step 5.2.2.1.1.1
Multiply by .
Step 5.2.2.1.1.2
Combine and .
Step 5.2.2.1.1.3
Multiply by .
Step 5.2.2.1.2
Move the negative in front of the fraction.
Step 5.3
Move all terms not containing to the right side of the equation.
Step 5.3.1
Subtract from both sides of the equation.
Step 5.3.2
To write as a fraction with a common denominator, multiply by .
Step 5.3.3
Combine and .
Step 5.3.4
Combine the numerators over the common denominator.
Step 5.3.5
Simplify the numerator.
Step 5.3.5.1
Multiply by .
Step 5.3.5.2
Subtract from .
Step 5.3.6
Move the negative in front of the fraction.
Step 5.4
Divide each term in by and simplify.
Step 5.4.1
Divide each term in by .
Step 5.4.2
Simplify the left side.
Step 5.4.2.1
Cancel the common factor of .
Step 5.4.2.1.1
Cancel the common factor.
Step 5.4.2.1.2
Divide by .
Step 5.4.3
Simplify the right side.
Step 5.4.3.1
Multiply the numerator by the reciprocal of the denominator.
Step 5.4.3.2
Multiply .
Step 5.4.3.2.1
Multiply by .
Step 5.4.3.2.2
Multiply by .
Step 6
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify .
Step 6.2.1.1
Simplify the numerator.
Step 6.2.1.1.1
Cancel the common factor of .
Step 6.2.1.1.1.1
Move the leading negative in into the numerator.
Step 6.2.1.1.1.2
Factor out of .
Step 6.2.1.1.1.3
Factor out of .
Step 6.2.1.1.1.4
Cancel the common factor.
Step 6.2.1.1.1.5
Rewrite the expression.
Step 6.2.1.1.2
Combine and .
Step 6.2.1.1.3
Multiply by .
Step 6.2.1.1.4
Move the negative in front of the fraction.
Step 6.2.1.1.5
To write as a fraction with a common denominator, multiply by .
Step 6.2.1.1.6
Combine and .
Step 6.2.1.1.7
Combine the numerators over the common denominator.
Step 6.2.1.1.8
Simplify the numerator.
Step 6.2.1.1.8.1
Multiply by .
Step 6.2.1.1.8.2
Subtract from .
Step 6.2.1.1.9
Move the negative in front of the fraction.
Step 6.2.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 6.2.1.3
Cancel the common factor of .
Step 6.2.1.3.1
Move the leading negative in into the numerator.
Step 6.2.1.3.2
Factor out of .
Step 6.2.1.3.3
Cancel the common factor.
Step 6.2.1.3.4
Rewrite the expression.
Step 6.2.1.4
Move the negative in front of the fraction.
Step 6.3
Replace all occurrences of in with .
Step 6.4
Simplify the right side.
Step 6.4.1
Simplify .
Step 6.4.1.1
Combine the numerators over the common denominator.
Step 6.4.1.2
Simplify each term.
Step 6.4.1.2.1
Cancel the common factor of .
Step 6.4.1.2.1.1
Move the leading negative in into the numerator.
Step 6.4.1.2.1.2
Factor out of .
Step 6.4.1.2.1.3
Factor out of .
Step 6.4.1.2.1.4
Cancel the common factor.
Step 6.4.1.2.1.5
Rewrite the expression.
Step 6.4.1.2.2
Combine and .
Step 6.4.1.2.3
Multiply by .
Step 6.4.1.2.4
Move the negative in front of the fraction.
Step 6.4.1.3
To write as a fraction with a common denominator, multiply by .
Step 6.4.1.4
Combine and .
Step 6.4.1.5
Combine the numerators over the common denominator.
Step 6.4.1.6
Simplify the numerator.
Step 6.4.1.6.1
Multiply by .
Step 6.4.1.6.2
Subtract from .
Step 6.4.1.7
Move the negative in front of the fraction.
Step 6.4.1.8
Multiply the numerator by the reciprocal of the denominator.
Step 6.4.1.9
Cancel the common factor of .
Step 6.4.1.9.1
Move the leading negative in into the numerator.
Step 6.4.1.9.2
Factor out of .
Step 6.4.1.9.3
Cancel the common factor.
Step 6.4.1.9.4
Rewrite the expression.
Step 6.4.1.10
Move the negative in front of the fraction.
Step 7
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 8
The result can be shown in multiple forms.
Point Form:
Equation Form: