Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Multiply both sides by .
Step 3.3
Simplify.
Step 3.3.1
Simplify the left side.
Step 3.3.1.1
Simplify .
Step 3.3.1.1.1
Factor out of .
Step 3.3.1.1.1.1
Rewrite as .
Step 3.3.1.1.1.2
Factor out of .
Step 3.3.1.1.1.3
Factor out of .
Step 3.3.1.1.1.4
Rewrite as .
Step 3.3.1.1.2
Cancel the common factor of .
Step 3.3.1.1.2.1
Cancel the common factor.
Step 3.3.1.1.2.2
Rewrite the expression.
Step 3.3.1.1.3
Apply the distributive property.
Step 3.3.1.1.4
Multiply by .
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Move to the left of .
Step 3.4
Solve for .
Step 3.4.1
Add to both sides of the equation.
Step 3.4.2
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 3.4.3
Simplify each side of the equation.
Step 3.4.3.1
Use to rewrite as .
Step 3.4.3.2
Simplify the left side.
Step 3.4.3.2.1
Simplify .
Step 3.4.3.2.1.1
Apply the product rule to .
Step 3.4.3.2.1.2
Use the power rule to distribute the exponent.
Step 3.4.3.2.1.2.1
Apply the product rule to .
Step 3.4.3.2.1.2.2
Apply the product rule to .
Step 3.4.3.2.1.3
Raise to the power of .
Step 3.4.3.2.1.4
Multiply the exponents in .
Step 3.4.3.2.1.4.1
Apply the power rule and multiply exponents, .
Step 3.4.3.2.1.4.2
Cancel the common factor of .
Step 3.4.3.2.1.4.2.1
Cancel the common factor.
Step 3.4.3.2.1.4.2.2
Rewrite the expression.
Step 3.4.3.2.1.5
Evaluate the exponent.
Step 3.4.3.2.1.6
Multiply by .
Step 3.4.3.2.1.7
Multiply the exponents in .
Step 3.4.3.2.1.7.1
Apply the power rule and multiply exponents, .
Step 3.4.3.2.1.7.2
Cancel the common factor of .
Step 3.4.3.2.1.7.2.1
Cancel the common factor.
Step 3.4.3.2.1.7.2.2
Rewrite the expression.
Step 3.4.3.2.1.8
Simplify.
Step 3.4.3.3
Simplify the right side.
Step 3.4.3.3.1
Simplify .
Step 3.4.3.3.1.1
Use the Binomial Theorem.
Step 3.4.3.3.1.2
Simplify each term.
Step 3.4.3.3.1.2.1
Apply the product rule to .
Step 3.4.3.3.1.2.2
Raise to the power of .
Step 3.4.3.3.1.2.3
Apply the product rule to .
Step 3.4.3.3.1.2.4
Raise to the power of .
Step 3.4.3.3.1.2.5
Multiply by .
Step 3.4.3.3.1.2.6
Multiply by .
Step 3.4.3.3.1.2.7
Multiply by .
Step 3.4.3.3.1.2.8
Multiply by by adding the exponents.
Step 3.4.3.3.1.2.8.1
Move .
Step 3.4.3.3.1.2.8.2
Multiply by .
Step 3.4.3.3.1.2.8.2.1
Raise to the power of .
Step 3.4.3.3.1.2.8.2.2
Use the power rule to combine exponents.
Step 3.4.3.3.1.2.8.3
Add and .
Step 3.4.3.3.1.2.9
Raise to the power of .
Step 3.4.3.3.1.2.10
Raise to the power of .
Step 3.4.4
Divide each term in by and simplify.
Step 3.4.4.1
Divide each term in by .
Step 3.4.4.2
Simplify the left side.
Step 3.4.4.2.1
Cancel the common factor of .
Step 3.4.4.2.1.1
Cancel the common factor.
Step 3.4.4.2.1.2
Divide by .
Step 3.4.4.3
Simplify the right side.
Step 3.4.4.3.1
Simplify each term.
Step 3.4.4.3.1.1
Cancel the common factor of and .
Step 3.4.4.3.1.1.1
Factor out of .
Step 3.4.4.3.1.1.2
Move the negative one from the denominator of .
Step 3.4.4.3.1.2
Rewrite as .
Step 3.4.4.3.1.3
Multiply by .
Step 3.4.4.3.1.4
Cancel the common factor of and .
Step 3.4.4.3.1.4.1
Factor out of .
Step 3.4.4.3.1.4.2
Move the negative one from the denominator of .
Step 3.4.4.3.1.5
Rewrite as .
Step 3.4.4.3.1.6
Multiply by .
Step 3.4.4.3.1.7
Cancel the common factor of and .
Step 3.4.4.3.1.7.1
Factor out of .
Step 3.4.4.3.1.7.2
Move the negative one from the denominator of .
Step 3.4.4.3.1.8
Rewrite as .
Step 3.4.4.3.1.9
Multiply by .
Step 3.4.4.3.1.10
Divide by .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Factor out of .
Step 5.2.3.1.1
Rewrite as .
Step 5.2.3.1.2
Factor out of .
Step 5.2.3.1.3
Factor out of .
Step 5.2.3.1.4
Rewrite as .
Step 5.2.3.2
Move the negative in front of the fraction.
Step 5.2.3.3
Use the power rule to distribute the exponent.
Step 5.2.3.3.1
Apply the product rule to .
Step 5.2.3.3.2
Apply the product rule to .
Step 5.2.3.4
Raise to the power of .
Step 5.2.3.5
Raise to the power of .
Step 5.2.3.6
Cancel the common factor of .
Step 5.2.3.6.1
Move the leading negative in into the numerator.
Step 5.2.3.6.2
Factor out of .
Step 5.2.3.6.3
Factor out of .
Step 5.2.3.6.4
Cancel the common factor.
Step 5.2.3.6.5
Rewrite the expression.
Step 5.2.3.7
Move the negative in front of the fraction.
Step 5.2.3.8
Simplify .
Step 5.2.3.8.1
Use the Binomial Theorem.
Step 5.2.3.8.2
Simplify each term.
Step 5.2.3.8.2.1
Raise to the power of .
Step 5.2.3.8.2.2
Raise to the power of .
Step 5.2.3.8.2.3
Multiply by .
Step 5.2.3.8.2.4
Multiply by .
Step 5.2.3.8.2.5
Rewrite as .
Step 5.2.3.8.2.6
Apply the product rule to .
Step 5.2.3.8.2.7
Raise to the power of .
Step 5.2.3.8.2.8
Rewrite as .
Step 5.2.3.8.2.8.1
Factor out of .
Step 5.2.3.8.2.8.2
Rewrite as .
Step 5.2.3.8.2.8.3
Add parentheses.
Step 5.2.3.8.2.9
Pull terms out from under the radical.
Step 5.2.3.8.2.10
Multiply by .
Step 5.2.3.8.2.11
Rewrite as .
Step 5.2.3.8.2.11.1
Use to rewrite as .
Step 5.2.3.8.2.11.2
Apply the power rule and multiply exponents, .
Step 5.2.3.8.2.11.3
Combine and .
Step 5.2.3.8.2.11.4
Cancel the common factor of .
Step 5.2.3.8.2.11.4.1
Cancel the common factor.
Step 5.2.3.8.2.11.4.2
Rewrite the expression.
Step 5.2.3.8.2.11.5
Simplify.
Step 5.2.3.8.3
Move .
Step 5.2.3.8.4
Move .
Step 5.2.3.8.5
Reorder and .
Step 5.2.3.9
Cancel the common factor of and .
Step 5.2.3.9.1
Factor out of .
Step 5.2.3.9.2
Factor out of .
Step 5.2.3.9.3
Factor out of .
Step 5.2.3.9.4
Factor out of .
Step 5.2.3.9.5
Factor out of .
Step 5.2.3.9.6
Factor out of .
Step 5.2.3.9.7
Factor out of .
Step 5.2.3.9.8
Cancel the common factors.
Step 5.2.3.9.8.1
Factor out of .
Step 5.2.3.9.8.2
Cancel the common factor.
Step 5.2.3.9.8.3
Rewrite the expression.
Step 5.2.3.9.8.4
Divide by .
Step 5.2.3.10
Apply the distributive property.
Step 5.2.3.11
Simplify.
Step 5.2.3.11.1
Multiply by .
Step 5.2.3.11.2
Multiply by .
Step 5.2.3.11.3
Multiply by .
Step 5.2.3.12
Apply the distributive property.
Step 5.2.3.13
Simplify.
Step 5.2.3.13.1
Multiply .
Step 5.2.3.13.1.1
Multiply by .
Step 5.2.3.13.1.2
Multiply by .
Step 5.2.3.13.2
Multiply by .
Step 5.2.3.13.3
Multiply by .
Step 5.2.3.13.4
Multiply by .
Step 5.2.3.14
Factor out of .
Step 5.2.3.14.1
Rewrite as .
Step 5.2.3.14.2
Factor out of .
Step 5.2.3.14.3
Factor out of .
Step 5.2.3.14.4
Rewrite as .
Step 5.2.3.15
Move the negative in front of the fraction.
Step 5.2.3.16
Use the power rule to distribute the exponent.
Step 5.2.3.16.1
Apply the product rule to .
Step 5.2.3.16.2
Apply the product rule to .
Step 5.2.3.17
Raise to the power of .
Step 5.2.3.18
Multiply by .
Step 5.2.3.19
Raise to the power of .
Step 5.2.3.20
Cancel the common factor of .
Step 5.2.3.20.1
Factor out of .
Step 5.2.3.20.2
Factor out of .
Step 5.2.3.20.3
Cancel the common factor.
Step 5.2.3.20.4
Rewrite the expression.
Step 5.2.3.21
Combine and .
Step 5.2.3.22
Move the negative in front of the fraction.
Step 5.2.3.23
Factor out of .
Step 5.2.3.23.1
Rewrite as .
Step 5.2.3.23.2
Factor out of .
Step 5.2.3.23.3
Factor out of .
Step 5.2.3.23.4
Rewrite as .
Step 5.2.3.24
Cancel the common factor of .
Step 5.2.3.24.1
Factor out of .
Step 5.2.3.24.2
Cancel the common factor.
Step 5.2.3.24.3
Rewrite the expression.
Step 5.2.3.25
Multiply by .
Step 5.2.3.26
Apply the distributive property.
Step 5.2.3.27
Multiply by .
Step 5.2.4
Combine the opposite terms in .
Step 5.2.4.1
Subtract from .
Step 5.2.4.2
Add and .
Step 5.2.5
To write as a fraction with a common denominator, multiply by .
Step 5.2.6
Simplify terms.
Step 5.2.6.1
Combine and .
Step 5.2.6.2
Combine the numerators over the common denominator.
Step 5.2.7
Simplify each term.
Step 5.2.7.1
Simplify the numerator.
Step 5.2.7.1.1
Let . Substitute for all occurrences of .
Step 5.2.7.1.1.1
Move to the left of .
Step 5.2.7.1.1.2
Rewrite as .
Step 5.2.7.1.1.3
Expand using the FOIL Method.
Step 5.2.7.1.1.3.1
Apply the distributive property.
Step 5.2.7.1.1.3.2
Apply the distributive property.
Step 5.2.7.1.1.3.3
Apply the distributive property.
Step 5.2.7.1.1.4
Simplify and combine like terms.
Step 5.2.7.1.1.4.1
Simplify each term.
Step 5.2.7.1.1.4.1.1
Multiply by .
Step 5.2.7.1.1.4.1.2
Move to the left of .
Step 5.2.7.1.1.4.1.3
Multiply .
Step 5.2.7.1.1.4.1.3.1
Raise to the power of .
Step 5.2.7.1.1.4.1.3.2
Use the power rule to combine exponents.
Step 5.2.7.1.1.4.1.3.3
Add and .
Step 5.2.7.1.1.4.1.4
Rewrite as .
Step 5.2.7.1.1.4.1.5
Apply the product rule to .
Step 5.2.7.1.1.4.1.6
Raise to the power of .
Step 5.2.7.1.1.4.1.7
Rewrite as .
Step 5.2.7.1.1.4.1.7.1
Factor out of .
Step 5.2.7.1.1.4.1.7.2
Rewrite as .
Step 5.2.7.1.1.4.1.7.3
Add parentheses.
Step 5.2.7.1.1.4.1.8
Pull terms out from under the radical.
Step 5.2.7.1.1.4.2
Add and .
Step 5.2.7.1.1.5
Apply the distributive property.
Step 5.2.7.1.1.6
Simplify.
Step 5.2.7.1.1.6.1
Multiply by .
Step 5.2.7.1.1.6.2
Multiply by .
Step 5.2.7.1.1.6.3
Multiply by .
Step 5.2.7.1.2
Factor out of .
Step 5.2.7.1.2.1
Factor out of .
Step 5.2.7.1.2.2
Factor out of .
Step 5.2.7.1.2.3
Factor out of .
Step 5.2.7.1.2.4
Factor out of .
Step 5.2.7.1.2.5
Factor out of .
Step 5.2.7.1.2.6
Factor out of .
Step 5.2.7.1.2.7
Factor out of .
Step 5.2.7.1.3
Replace all occurrences of with .
Step 5.2.7.2
Cancel the common factor of .
Step 5.2.7.2.1
Cancel the common factor.
Step 5.2.7.2.2
Divide by .
Step 5.2.8
Simplify by adding terms.
Step 5.2.8.1
Combine the opposite terms in .
Step 5.2.8.1.1
Add and .
Step 5.2.8.1.2
Add and .
Step 5.2.8.1.3
Add and .
Step 5.2.8.1.4
Add and .
Step 5.2.8.2
Add and .
Step 5.2.8.3
Combine the opposite terms in .
Step 5.2.8.3.1
Add and .
Step 5.2.8.3.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify the numerator.
Step 5.3.3.1
Factor out of .
Step 5.3.3.1.1
Rewrite as .
Step 5.3.3.1.2
Factor out of .
Step 5.3.3.1.3
Factor out of .
Step 5.3.3.1.4
Rewrite as .
Step 5.3.3.2
Factor out of .
Step 5.3.3.2.1
Factor out of .
Step 5.3.3.2.2
Factor out of .
Step 5.3.3.2.3
Factor out of .
Step 5.3.3.2.4
Factor out of .
Step 5.3.3.2.5
Factor out of .
Step 5.3.3.2.6
Factor out of .
Step 5.3.3.2.7
Factor out of .
Step 5.3.3.3
Multiply by .
Step 5.3.3.4
Rewrite as .
Step 5.3.3.4.1
Rewrite as .
Step 5.3.3.4.2
Rewrite as .
Step 5.3.3.5
Pull terms out from under the radical.
Step 5.3.3.6
Apply the product rule to .
Step 5.3.3.7
Raise to the power of .
Step 5.3.3.8
Rewrite in a factored form.
Step 5.3.3.8.1
Factor using the rational roots test.
Step 5.3.3.8.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 5.3.3.8.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 5.3.3.8.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 5.3.3.8.1.3.1
Substitute into the polynomial.
Step 5.3.3.8.1.3.2
Raise to the power of .
Step 5.3.3.8.1.3.3
Multiply by .
Step 5.3.3.8.1.3.4
Raise to the power of .
Step 5.3.3.8.1.3.5
Multiply by .
Step 5.3.3.8.1.3.6
Subtract from .
Step 5.3.3.8.1.3.7
Multiply by .
Step 5.3.3.8.1.3.8
Add and .
Step 5.3.3.8.1.3.9
Subtract from .
Step 5.3.3.8.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 5.3.3.8.1.5
Divide by .
Step 5.3.3.8.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
| + | - | - | - | - |
Step 5.3.3.8.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
| - | |||||||||||
| + | - | - | - | - |
Step 5.3.3.8.1.5.3
Multiply the new quotient term by the divisor.
| - | |||||||||||
| + | - | - | - | - | |||||||
| - | - |
Step 5.3.3.8.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
| - | |||||||||||
| + | - | - | - | - | |||||||
| + | + |
Step 5.3.3.8.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | |||||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - |
Step 5.3.3.8.1.5.6
Pull the next terms from the original dividend down into the current dividend.
| - | |||||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - | - |
Step 5.3.3.8.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
| - | - | ||||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - | - |
Step 5.3.3.8.1.5.8
Multiply the new quotient term by the divisor.
| - | - | ||||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - | - | ||||||||||
| - | - |
Step 5.3.3.8.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
| - | - | ||||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - | - | ||||||||||
| + | + |
Step 5.3.3.8.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | - | ||||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| - |
Step 5.3.3.8.1.5.11
Pull the next terms from the original dividend down into the current dividend.
| - | - | ||||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| - | - |
Step 5.3.3.8.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
| - | - | - | |||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| - | - |
Step 5.3.3.8.1.5.13
Multiply the new quotient term by the divisor.
| - | - | - | |||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| - | - | ||||||||||
| - | - |
Step 5.3.3.8.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
| - | - | - | |||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| - | - | ||||||||||
| + | + |
Step 5.3.3.8.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | - | - | |||||||||
| + | - | - | - | - | |||||||
| + | + | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
Step 5.3.3.8.1.5.16
Since the remander is , the final answer is the quotient.
Step 5.3.3.8.1.6
Write as a set of factors.
Step 5.3.3.8.2
Factor by grouping.
Step 5.3.3.8.2.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 5.3.3.8.2.1.1
Factor out of .
Step 5.3.3.8.2.1.2
Rewrite as plus
Step 5.3.3.8.2.1.3
Apply the distributive property.
Step 5.3.3.8.2.2
Factor out the greatest common factor from each group.
Step 5.3.3.8.2.2.1
Group the first two terms and the last two terms.
Step 5.3.3.8.2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 5.3.3.8.2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 5.3.3.9
Combine exponents.
Step 5.3.3.9.1
Factor out of .
Step 5.3.3.9.2
Rewrite as .
Step 5.3.3.9.3
Factor out of .
Step 5.3.3.9.4
Raise to the power of .
Step 5.3.3.9.5
Raise to the power of .
Step 5.3.3.9.6
Use the power rule to combine exponents.
Step 5.3.3.9.7
Add and .
Step 5.3.3.9.8
Factor out of .
Step 5.3.3.9.9
Rewrite as .
Step 5.3.3.9.10
Factor out of .
Step 5.3.3.9.11
Rewrite as .
Step 5.3.3.9.12
Apply the product rule to .
Step 5.3.3.9.13
Raise to the power of .
Step 5.3.3.9.14
Multiply by .
Step 5.3.3.9.15
Raise to the power of .
Step 5.3.3.9.16
Use the power rule to combine exponents.
Step 5.3.3.9.17
Add and .
Step 5.3.3.10
Rewrite as .
Step 5.3.3.11
Pull terms out from under the radical, assuming real numbers.
Step 5.3.3.12
Apply the distributive property.
Step 5.3.3.13
Rewrite as .
Step 5.3.3.14
Multiply by .
Step 5.3.3.15
Apply the distributive property.
Step 5.3.3.16
Multiply by .
Step 5.3.3.17
Multiply by .
Step 5.3.3.18
Subtract from .
Step 5.3.3.19
Add and .
Step 5.3.3.20
Multiply by .
Step 5.3.4
Cancel the common factor of .
Step 5.3.4.1
Cancel the common factor.
Step 5.3.4.2
Divide by .
Step 5.4
Since and , then is the inverse of .