Enter a problem...
Algebra Examples
Step 1
Step 1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.2
Write the factored form using these integers.
Step 2
Step 2.1
Rewrite as .
Step 2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 2.3
Rewrite the polynomial.
Step 2.4
Factor using the perfect square trinomial rule , where and .
Step 3
Step 3.1
Factor out of .
Step 3.1.1
Factor out of .
Step 3.1.2
Factor out of .
Step 3.1.3
Factor out of .
Step 3.2
Rewrite as .
Step 3.3
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4
Step 4.1
Cancel the common factor of .
Step 4.1.1
Factor out of .
Step 4.1.2
Cancel the common factor.
Step 4.1.3
Rewrite the expression.
Step 4.2
Cancel the common factor of .
Step 4.2.1
Factor out of .
Step 4.2.2
Cancel the common factor.
Step 4.2.3
Rewrite the expression.
Step 4.3
Cancel the common factor of .
Step 4.3.1
Cancel the common factor.
Step 4.3.2
Rewrite the expression.
Step 4.4
Apply the distributive property.
Step 4.5
Combine and .
Step 4.6
Cancel the common factor of .
Step 4.6.1
Factor out of .
Step 4.6.2
Cancel the common factor.
Step 4.6.3
Rewrite the expression.
Step 5
To write as a fraction with a common denominator, multiply by .
Step 6
Combine and .
Step 7
Combine the numerators over the common denominator.
Step 8
Multiply by .