Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
Steps to find the LCM for are:
1. Find the LCM for the numeric part .
2. Find the LCM for the variable part .
3. Find the LCM for the compound variable part .
4. Multiply each LCM together.
Step 2.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.4
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.5
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.6
The factor for is itself.
occurs time.
Step 2.7
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either term.
Step 2.8
The factor for is itself.
occurs time.
Step 2.9
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 2.10
The Least Common Multiple of some numbers is the smallest number that the numbers are factors of.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Cancel the common factor of .
Step 3.2.1.1.1
Cancel the common factor.
Step 3.2.1.1.2
Rewrite the expression.
Step 3.2.1.2
Apply the distributive property.
Step 3.2.1.3
Multiply by .
Step 3.2.1.4
Cancel the common factor of .
Step 3.2.1.4.1
Factor out of .
Step 3.2.1.4.2
Cancel the common factor.
Step 3.2.1.4.3
Rewrite the expression.
Step 3.2.1.5
Apply the distributive property.
Step 3.2.1.6
Multiply by .
Step 3.2.1.7
Multiply by .
Step 3.2.1.8
Apply the distributive property.
Step 3.2.2
Simplify by adding terms.
Step 3.2.2.1
Add and .
Step 3.2.2.2
Combine the opposite terms in .
Step 3.2.2.2.1
Subtract from .
Step 3.2.2.2.2
Add and .
Step 3.3
Simplify the right side.
Step 3.3.1
Apply the distributive property.
Step 3.3.2
Simplify the expression.
Step 3.3.2.1
Multiply by .
Step 3.3.2.2
Multiply by .
Step 3.3.2.3
Multiply by .
Step 4
Step 4.1
Subtract from both sides of the equation.
Step 4.2
Divide each term in by and simplify.
Step 4.2.1
Divide each term in by .
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Cancel the common factor of .
Step 4.2.2.1.1
Cancel the common factor.
Step 4.2.2.1.2
Divide by .
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
Dividing two negative values results in a positive value.
Step 4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4.4
Simplify .
Step 4.4.1
Rewrite as .
Step 4.4.2
Multiply by .
Step 4.4.3
Combine and simplify the denominator.
Step 4.4.3.1
Multiply by .
Step 4.4.3.2
Raise to the power of .
Step 4.4.3.3
Raise to the power of .
Step 4.4.3.4
Use the power rule to combine exponents.
Step 4.4.3.5
Add and .
Step 4.4.3.6
Rewrite as .
Step 4.4.3.6.1
Use to rewrite as .
Step 4.4.3.6.2
Apply the power rule and multiply exponents, .
Step 4.4.3.6.3
Combine and .
Step 4.4.3.6.4
Cancel the common factor of .
Step 4.4.3.6.4.1
Cancel the common factor.
Step 4.4.3.6.4.2
Rewrite the expression.
Step 4.4.3.6.5
Evaluate the exponent.
Step 4.4.4
Simplify the numerator.
Step 4.4.4.1
Combine using the product rule for radicals.
Step 4.4.4.2
Multiply by .
Step 4.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.5.1
First, use the positive value of the to find the first solution.
Step 4.5.2
Next, use the negative value of the to find the second solution.
Step 4.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form: