Enter a problem...
Algebra Examples
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Apply the distributive property.
Step 1.1.2
Multiply .
Step 1.1.2.1
Combine and .
Step 1.1.2.2
Multiply by .
Step 1.2
To write as a fraction with a common denominator, multiply by .
Step 1.3
Combine the numerators over the common denominator.
Step 1.4
Simplify each term.
Step 1.4.1
Simplify the numerator.
Step 1.4.1.1
Simplify each term.
Step 1.4.1.1.1
To write as a fraction with a common denominator, multiply by .
Step 1.4.1.1.2
Combine the numerators over the common denominator.
Step 1.4.1.1.3
Multiply by .
Step 1.4.1.1.4
Apply the product rule to .
Step 1.4.1.1.5
Cancel the common factor of .
Step 1.4.1.1.5.1
Factor out of .
Step 1.4.1.1.5.2
Cancel the common factor.
Step 1.4.1.1.5.3
Rewrite the expression.
Step 1.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.4.1.3
Combine the numerators over the common denominator.
Step 1.4.2
Multiply the numerator by the reciprocal of the denominator.
Step 1.4.3
Multiply .
Step 1.4.3.1
Multiply by .
Step 1.4.3.2
Raise to the power of .
Step 1.4.3.3
Raise to the power of .
Step 1.4.3.4
Use the power rule to combine exponents.
Step 1.4.3.5
Add and .
Step 2
Step 2.1
Rewrite as .
Step 2.2
Expand using the FOIL Method.
Step 2.2.1
Apply the distributive property.
Step 2.2.2
Apply the distributive property.
Step 2.2.3
Apply the distributive property.
Step 2.3
Simplify and combine like terms.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Multiply by .
Step 2.3.1.2
Move to the left of .
Step 2.3.1.3
Multiply by by adding the exponents.
Step 2.3.1.3.1
Use the power rule to combine exponents.
Step 2.3.1.3.2
Add and .
Step 2.3.2
Add and .
Step 2.4
Reorder terms.
Step 3
Step 3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 3.2
The LCM of one and any expression is the expression.
Step 4
Step 4.1
Multiply each term in by .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Cancel the common factor of .
Step 4.2.1.1.1
Cancel the common factor.
Step 4.2.1.1.2
Rewrite the expression.
Step 4.2.1.2
Multiply by by adding the exponents.
Step 4.2.1.2.1
Move .
Step 4.2.1.2.2
Multiply by .
Step 4.2.1.2.2.1
Raise to the power of .
Step 4.2.1.2.2.2
Use the power rule to combine exponents.
Step 4.2.1.2.3
Add and .
Step 5
Step 5.1
Move all terms containing to the left side of the equation.
Step 5.1.1
Subtract from both sides of the equation.
Step 5.1.2
Subtract from .
Step 5.2
Factor the left side of the equation.
Step 5.2.1
Regroup terms.
Step 5.2.2
Factor out of .
Step 5.2.2.1
Factor out of .
Step 5.2.2.2
Factor out of .
Step 5.2.2.3
Factor out of .
Step 5.2.3
Factor out of .
Step 5.2.3.1
Factor out of .
Step 5.2.3.2
Factor out of .
Step 5.2.3.3
Factor out of .
Step 5.2.3.4
Factor out of .
Step 5.2.3.5
Factor out of .
Step 5.2.4
Factor.
Step 5.2.4.1
Factor using the AC method.
Step 5.2.4.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 5.2.4.1.2
Write the factored form using these integers.
Step 5.2.4.2
Remove unnecessary parentheses.
Step 5.2.5
Factor out of .
Step 5.2.5.1
Factor out of .
Step 5.2.5.2
Factor out of .
Step 5.2.5.3
Factor out of .
Step 5.2.6
Apply the distributive property.
Step 5.2.7
Multiply by by adding the exponents.
Step 5.2.7.1
Multiply by .
Step 5.2.7.1.1
Raise to the power of .
Step 5.2.7.1.2
Use the power rule to combine exponents.
Step 5.2.7.2
Add and .
Step 5.2.8
Move to the left of .
Step 5.2.9
Reorder terms.
Step 5.2.10
Factor.
Step 5.2.10.1
Rewrite in a factored form.
Step 5.2.10.1.1
Factor using the rational roots test.
Step 5.2.10.1.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 5.2.10.1.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 5.2.10.1.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 5.2.10.1.1.3.1
Substitute into the polynomial.
Step 5.2.10.1.1.3.2
Raise to the power of .
Step 5.2.10.1.1.3.3
Raise to the power of .
Step 5.2.10.1.1.3.4
Multiply by .
Step 5.2.10.1.1.3.5
Subtract from .
Step 5.2.10.1.1.3.6
Add and .
Step 5.2.10.1.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 5.2.10.1.1.5
Divide by .
Step 5.2.10.1.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
| + | - | + | + |
Step 5.2.10.1.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
| + | - | + | + |
Step 5.2.10.1.1.5.3
Multiply the new quotient term by the divisor.
| + | - | + | + | ||||||||
| + | + |
Step 5.2.10.1.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
| + | - | + | + | ||||||||
| - | - |
Step 5.2.10.1.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - |
Step 5.2.10.1.1.5.6
Pull the next terms from the original dividend down into the current dividend.
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + |
Step 5.2.10.1.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
| - | |||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + |
Step 5.2.10.1.1.5.8
Multiply the new quotient term by the divisor.
| - | |||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| - | - |
Step 5.2.10.1.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
| - | |||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + |
Step 5.2.10.1.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | |||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + |
Step 5.2.10.1.1.5.11
Pull the next terms from the original dividend down into the current dividend.
| - | |||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | + |
Step 5.2.10.1.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
| - | + | ||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | + |
Step 5.2.10.1.1.5.13
Multiply the new quotient term by the divisor.
| - | + | ||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | + | ||||||||||
| + | + |
Step 5.2.10.1.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
| - | + | ||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | + | ||||||||||
| - | - |
Step 5.2.10.1.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | + | ||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | + | ||||||||||
| - | - | ||||||||||
Step 5.2.10.1.1.5.16
Since the remander is , the final answer is the quotient.
Step 5.2.10.1.1.6
Write as a set of factors.
Step 5.2.10.1.2
Factor using the AC method.
Step 5.2.10.1.2.1
Factor using the AC method.
Step 5.2.10.1.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 5.2.10.1.2.1.2
Write the factored form using these integers.
Step 5.2.10.1.2.2
Remove unnecessary parentheses.
Step 5.2.10.2
Remove unnecessary parentheses.
Step 5.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 5.4
Set equal to and solve for .
Step 5.4.1
Set equal to .
Step 5.4.2
Subtract from both sides of the equation.
Step 5.5
Set equal to and solve for .
Step 5.5.1
Set equal to .
Step 5.5.2
Subtract from both sides of the equation.
Step 5.6
Set equal to and solve for .
Step 5.6.1
Set equal to .
Step 5.6.2
Add to both sides of the equation.
Step 5.7
Set equal to and solve for .
Step 5.7.1
Set equal to .
Step 5.7.2
Add to both sides of the equation.
Step 5.8
The final solution is all the values that make true.