Enter a problem...
Algebra Examples
Step 1
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Step 1.3.1
Simplify the numerator.
Step 1.3.1.1
Raise to the power of .
Step 1.3.1.2
Multiply by .
Step 1.3.1.3
Apply the distributive property.
Step 1.3.1.4
Simplify.
Step 1.3.1.4.1
Multiply by .
Step 1.3.1.4.2
Multiply by .
Step 1.3.1.4.3
Multiply by .
Step 1.3.1.5
Subtract from .
Step 1.3.1.6
Rewrite in a factored form.
Step 1.3.1.6.1
Factor out of .
Step 1.3.1.6.1.1
Factor out of .
Step 1.3.1.6.1.2
Factor out of .
Step 1.3.1.6.1.3
Factor out of .
Step 1.3.1.6.1.4
Factor out of .
Step 1.3.1.6.1.5
Factor out of .
Step 1.3.1.6.2
Factor using the perfect square rule.
Step 1.3.1.6.2.1
Rewrite as .
Step 1.3.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.3.1.6.2.3
Rewrite the polynomial.
Step 1.3.1.6.2.4
Factor using the perfect square trinomial rule , where and .
Step 1.3.1.7
Rewrite as .
Step 1.3.1.7.1
Factor out of .
Step 1.3.1.7.2
Rewrite as .
Step 1.3.1.7.3
Move .
Step 1.3.1.7.4
Rewrite as .
Step 1.3.1.8
Pull terms out from under the radical.
Step 1.3.1.9
Apply the distributive property.
Step 1.3.1.10
Multiply by .
Step 1.3.1.11
Apply the distributive property.
Step 1.3.2
Multiply by .
Step 1.4
Simplify the expression to solve for the portion of the .
Step 1.4.1
Simplify the numerator.
Step 1.4.1.1
Raise to the power of .
Step 1.4.1.2
Multiply by .
Step 1.4.1.3
Apply the distributive property.
Step 1.4.1.4
Simplify.
Step 1.4.1.4.1
Multiply by .
Step 1.4.1.4.2
Multiply by .
Step 1.4.1.4.3
Multiply by .
Step 1.4.1.5
Subtract from .
Step 1.4.1.6
Rewrite in a factored form.
Step 1.4.1.6.1
Factor out of .
Step 1.4.1.6.1.1
Factor out of .
Step 1.4.1.6.1.2
Factor out of .
Step 1.4.1.6.1.3
Factor out of .
Step 1.4.1.6.1.4
Factor out of .
Step 1.4.1.6.1.5
Factor out of .
Step 1.4.1.6.2
Factor using the perfect square rule.
Step 1.4.1.6.2.1
Rewrite as .
Step 1.4.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.4.1.6.2.3
Rewrite the polynomial.
Step 1.4.1.6.2.4
Factor using the perfect square trinomial rule , where and .
Step 1.4.1.7
Rewrite as .
Step 1.4.1.7.1
Factor out of .
Step 1.4.1.7.2
Rewrite as .
Step 1.4.1.7.3
Move .
Step 1.4.1.7.4
Rewrite as .
Step 1.4.1.8
Pull terms out from under the radical.
Step 1.4.1.9
Apply the distributive property.
Step 1.4.1.10
Multiply by .
Step 1.4.1.11
Apply the distributive property.
Step 1.4.2
Multiply by .
Step 1.4.3
Change the to .
Step 1.4.4
Cancel the common factor of and .
Step 1.4.4.1
Factor out of .
Step 1.4.4.2
Factor out of .
Step 1.4.4.3
Factor out of .
Step 1.4.4.4
Factor out of .
Step 1.4.4.5
Factor out of .
Step 1.4.4.6
Cancel the common factors.
Step 1.4.4.6.1
Factor out of .
Step 1.4.4.6.2
Cancel the common factor.
Step 1.4.4.6.3
Rewrite the expression.
Step 1.4.5
Reorder terms.
Step 1.5
Simplify the expression to solve for the portion of the .
Step 1.5.1
Simplify the numerator.
Step 1.5.1.1
Raise to the power of .
Step 1.5.1.2
Multiply by .
Step 1.5.1.3
Apply the distributive property.
Step 1.5.1.4
Simplify.
Step 1.5.1.4.1
Multiply by .
Step 1.5.1.4.2
Multiply by .
Step 1.5.1.4.3
Multiply by .
Step 1.5.1.5
Subtract from .
Step 1.5.1.6
Rewrite in a factored form.
Step 1.5.1.6.1
Factor out of .
Step 1.5.1.6.1.1
Factor out of .
Step 1.5.1.6.1.2
Factor out of .
Step 1.5.1.6.1.3
Factor out of .
Step 1.5.1.6.1.4
Factor out of .
Step 1.5.1.6.1.5
Factor out of .
Step 1.5.1.6.2
Factor using the perfect square rule.
Step 1.5.1.6.2.1
Rewrite as .
Step 1.5.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.5.1.6.2.3
Rewrite the polynomial.
Step 1.5.1.6.2.4
Factor using the perfect square trinomial rule , where and .
Step 1.5.1.7
Rewrite as .
Step 1.5.1.7.1
Factor out of .
Step 1.5.1.7.2
Rewrite as .
Step 1.5.1.7.3
Move .
Step 1.5.1.7.4
Rewrite as .
Step 1.5.1.8
Pull terms out from under the radical.
Step 1.5.1.9
Apply the distributive property.
Step 1.5.1.10
Multiply by .
Step 1.5.1.11
Apply the distributive property.
Step 1.5.2
Multiply by .
Step 1.5.3
Change the to .
Step 1.5.4
Cancel the common factor of and .
Step 1.5.4.1
Rewrite as .
Step 1.5.4.2
Factor out of .
Step 1.5.4.3
Factor out of .
Step 1.5.4.4
Cancel the common factors.
Step 1.5.4.4.1
Factor out of .
Step 1.5.4.4.2
Cancel the common factor.
Step 1.5.4.4.3
Rewrite the expression.
Step 1.5.5
Reorder terms.
Step 1.5.6
Move the negative in front of the fraction.
Step 1.6
The final answer is the combination of both solutions.
Step 2
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
Step 3
Split the fraction into two fractions.
Step 4
Step 4.1
Split the fraction into two fractions.
Step 4.2
Divide by .
Step 4.3
Move the negative in front of the fraction.
Step 5
Split the fraction into two fractions.
Step 6
Step 6.1
Split the fraction into two fractions.
Step 6.2
Divide by .
Step 6.3
Move the negative in front of the fraction.
Step 7
Apply the distributive property.
Step 8
Step 8.1
Multiply by .
Step 8.2
Multiply .
Step 8.2.1
Multiply by .
Step 8.2.2
Multiply by .
Step 9
Reorder terms.
Step 10
Remove parentheses.
Step 11