Algebra Examples

Solve the System of Equations y+2x+1=0 4y-4x^2-12x=-7
Step 1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from both sides of the equation.
Step 2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify .
Tap for more steps...
Step 2.2.1.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Multiply by .
Step 2.2.1.1.3
Multiply by .
Step 2.2.1.2
Subtract from .
Step 3
Solve for in .
Tap for more steps...
Step 3.1
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 3.1.1
Add to both sides of the equation.
Step 3.1.2
Add and .
Step 3.2
Use the quadratic formula to find the solutions.
Step 3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4
Simplify.
Tap for more steps...
Step 3.4.1
Simplify the numerator.
Tap for more steps...
Step 3.4.1.1
Raise to the power of .
Step 3.4.1.2
Multiply .
Tap for more steps...
Step 3.4.1.2.1
Multiply by .
Step 3.4.1.2.2
Multiply by .
Step 3.4.1.3
Add and .
Step 3.4.1.4
Rewrite as .
Tap for more steps...
Step 3.4.1.4.1
Factor out of .
Step 3.4.1.4.2
Rewrite as .
Step 3.4.1.5
Pull terms out from under the radical.
Step 3.4.2
Multiply by .
Step 3.4.3
Simplify .
Step 3.4.4
Move the negative in front of the fraction.
Step 3.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.5.1
Simplify the numerator.
Tap for more steps...
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply .
Tap for more steps...
Step 3.5.1.2.1
Multiply by .
Step 3.5.1.2.2
Multiply by .
Step 3.5.1.3
Add and .
Step 3.5.1.4
Rewrite as .
Tap for more steps...
Step 3.5.1.4.1
Factor out of .
Step 3.5.1.4.2
Rewrite as .
Step 3.5.1.5
Pull terms out from under the radical.
Step 3.5.2
Multiply by .
Step 3.5.3
Simplify .
Step 3.5.4
Move the negative in front of the fraction.
Step 3.5.5
Change the to .
Step 3.6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.6.1
Simplify the numerator.
Tap for more steps...
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply .
Tap for more steps...
Step 3.6.1.2.1
Multiply by .
Step 3.6.1.2.2
Multiply by .
Step 3.6.1.3
Add and .
Step 3.6.1.4
Rewrite as .
Tap for more steps...
Step 3.6.1.4.1
Factor out of .
Step 3.6.1.4.2
Rewrite as .
Step 3.6.1.5
Pull terms out from under the radical.
Step 3.6.2
Multiply by .
Step 3.6.3
Simplify .
Step 3.6.4
Move the negative in front of the fraction.
Step 3.6.5
Change the to .
Step 3.7
The final answer is the combination of both solutions.
Step 4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Simplify .
Tap for more steps...
Step 4.2.1.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.1.1.1
Move the leading negative in into the numerator.
Step 4.2.1.1.1.2
Factor out of .
Step 4.2.1.1.1.3
Cancel the common factor.
Step 4.2.1.1.1.4
Rewrite the expression.
Step 4.2.1.1.2
Multiply by .
Step 4.2.1.1.3
Multiply by .
Step 4.2.1.2
Subtract from .
Step 5
Replace all occurrences of with in each equation.
Tap for more steps...
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Tap for more steps...
Step 5.2.1
Simplify .
Tap for more steps...
Step 5.2.1.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 5.2.1.1.1.1
Move the leading negative in into the numerator.
Step 5.2.1.1.1.2
Factor out of .
Step 5.2.1.1.1.3
Cancel the common factor.
Step 5.2.1.1.1.4
Rewrite the expression.
Step 5.2.1.1.2
Multiply by .
Step 5.2.1.1.3
Multiply by .
Step 5.2.1.2
Subtract from .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8