Enter a problem...
Algebra Examples
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Multiply both sides of the equation by .
Step 1.3
Simplify both sides of the equation.
Step 1.3.1
Simplify the left side.
Step 1.3.1.1
Simplify .
Step 1.3.1.1.1
Cancel the common factor of .
Step 1.3.1.1.1.1
Move the leading negative in into the numerator.
Step 1.3.1.1.1.2
Move the leading negative in into the numerator.
Step 1.3.1.1.1.3
Factor out of .
Step 1.3.1.1.1.4
Cancel the common factor.
Step 1.3.1.1.1.5
Rewrite the expression.
Step 1.3.1.1.2
Cancel the common factor of .
Step 1.3.1.1.2.1
Factor out of .
Step 1.3.1.1.2.2
Cancel the common factor.
Step 1.3.1.1.2.3
Rewrite the expression.
Step 1.3.1.1.3
Multiply.
Step 1.3.1.1.3.1
Multiply by .
Step 1.3.1.1.3.2
Multiply by .
Step 1.3.2
Simplify the right side.
Step 1.3.2.1
Simplify .
Step 1.3.2.1.1
Simplify terms.
Step 1.3.2.1.1.1
Apply the distributive property.
Step 1.3.2.1.1.2
Cancel the common factor of .
Step 1.3.2.1.1.2.1
Move the leading negative in into the numerator.
Step 1.3.2.1.1.2.2
Factor out of .
Step 1.3.2.1.1.2.3
Factor out of .
Step 1.3.2.1.1.2.4
Cancel the common factor.
Step 1.3.2.1.1.2.5
Rewrite the expression.
Step 1.3.2.1.1.3
Cancel the common factor of .
Step 1.3.2.1.1.3.1
Factor out of .
Step 1.3.2.1.1.3.2
Factor out of .
Step 1.3.2.1.1.3.3
Cancel the common factor.
Step 1.3.2.1.1.3.4
Rewrite the expression.
Step 1.3.2.1.1.4
Multiply by .
Step 1.3.2.1.1.5
Multiply.
Step 1.3.2.1.1.5.1
Multiply by .
Step 1.3.2.1.1.5.2
Multiply by .
Step 1.3.2.1.1.6
Cancel the common factor of .
Step 1.3.2.1.1.6.1
Move the leading negative in into the numerator.
Step 1.3.2.1.1.6.2
Factor out of .
Step 1.3.2.1.1.6.3
Factor out of .
Step 1.3.2.1.1.6.4
Cancel the common factor.
Step 1.3.2.1.1.6.5
Rewrite the expression.
Step 1.3.2.1.1.7
Multiply by .
Step 1.3.2.1.1.8
Multiply by .
Step 1.3.2.1.2
Simplify each term.
Step 1.3.2.1.2.1
Move the negative in front of the fraction.
Step 1.3.2.1.2.2
Move the negative in front of the fraction.
Step 1.4
Reorder and .
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Simplify the numerator.
Step 2.2.1.1.1.1
Factor out of .
Step 2.2.1.1.1.1.1
Factor out of .
Step 2.2.1.1.1.1.2
Factor out of .
Step 2.2.1.1.1.1.3
Factor out of .
Step 2.2.1.1.1.2
Combine exponents.
Step 2.2.1.1.1.2.1
Factor out negative.
Step 2.2.1.1.1.2.2
Multiply by .
Step 2.2.1.1.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.1.1.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.2.1.1.1.4.1
Multiply by .
Step 2.2.1.1.1.4.2
Multiply by .
Step 2.2.1.1.1.5
Combine the numerators over the common denominator.
Step 2.2.1.1.1.6
Multiply by .
Step 2.2.1.1.2
Combine and .
Step 2.2.1.1.3
Simplify the numerator.
Step 2.2.1.1.3.1
Reduce the expression by cancelling the common factors.
Step 2.2.1.1.3.1.1
Factor out of .
Step 2.2.1.1.3.1.2
Factor out of .
Step 2.2.1.1.3.1.3
Cancel the common factor.
Step 2.2.1.1.3.1.4
Rewrite the expression.
Step 2.2.1.1.3.2
Move the negative in front of the fraction.
Step 2.2.1.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 2.2.1.1.5
Multiply .
Step 2.2.1.1.5.1
Multiply by .
Step 2.2.1.1.5.2
Multiply by .
Step 2.2.1.1.6
Multiply .
Step 2.2.1.1.6.1
Multiply by .
Step 2.2.1.1.6.2
Multiply by .
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.2.1.3.1
Multiply by .
Step 2.2.1.3.2
Multiply by .
Step 2.2.1.4
Combine the numerators over the common denominator.
Step 2.2.1.5
Simplify the numerator.
Step 2.2.1.5.1
Multiply by .
Step 2.2.1.5.2
Subtract from .
Step 2.2.1.5.3
Factor out of .
Step 2.2.1.5.3.1
Factor out of .
Step 2.2.1.5.3.2
Factor out of .
Step 2.2.1.5.3.3
Factor out of .
Step 2.2.1.6
Cancel the common factors.
Step 2.2.1.6.1
Factor out of .
Step 2.2.1.6.2
Cancel the common factor.
Step 2.2.1.6.3
Rewrite the expression.
Step 2.2.1.7
Factor out of .
Step 2.2.1.8
Rewrite as .
Step 2.2.1.9
Factor out of .
Step 2.2.1.10
Simplify the expression.
Step 2.2.1.10.1
Rewrite as .
Step 2.2.1.10.2
Move the negative in front of the fraction.
Step 3
Step 3.1
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
Step 3.2
Simplify .
Step 3.2.1
Apply the distributive property.
Step 3.2.2
Multiply.
Step 3.2.2.1
Multiply by .
Step 3.2.2.2
Multiply by .
Step 3.3
Move all terms not containing to the right side of the equation.
Step 3.3.1
Subtract from both sides of the equation.
Step 3.3.2
Subtract from .
Step 3.4
Divide each term in by and simplify.
Step 3.4.1
Divide each term in by .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Cancel the common factor of .
Step 3.4.2.1.1
Cancel the common factor.
Step 3.4.2.1.2
Divide by .
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Divide by .
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Cancel the common factor of and .
Step 4.2.1.1.1
Factor out of .
Step 4.2.1.1.2
Cancel the common factors.
Step 4.2.1.1.2.1
Factor out of .
Step 4.2.1.1.2.2
Cancel the common factor.
Step 4.2.1.1.2.3
Rewrite the expression.
Step 4.2.1.2
Combine the numerators over the common denominator.
Step 4.2.1.3
Simplify the expression.
Step 4.2.1.3.1
Subtract from .
Step 4.2.1.3.2
Divide by .
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 6
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 7