Enter a problem...
Algebra Examples
Step 1
Step 1.1
To find the coordinate of the vertex, set the inside of the absolute value equal to . In this case, .
Step 1.2
Solve the equation to find the coordinate for the absolute value vertex.
Step 1.2.1
Add to both sides of the equation.
Step 1.2.2
Multiply both sides of the equation by .
Step 1.2.3
Simplify both sides of the equation.
Step 1.2.3.1
Simplify the left side.
Step 1.2.3.1.1
Cancel the common factor of .
Step 1.2.3.1.1.1
Cancel the common factor.
Step 1.2.3.1.1.2
Rewrite the expression.
Step 1.2.3.2
Simplify the right side.
Step 1.2.3.2.1
Multiply by .
Step 1.3
Replace the variable with in the expression.
Step 1.4
Simplify .
Step 1.4.1
Divide by .
Step 1.4.2
Subtract from .
Step 1.4.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 1.5
The absolute value vertex is .
Step 2
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
Set-Builder Notation:
Step 3
Step 3.1
Substitute the value into . In this case, the point is .
Step 3.1.1
Replace the variable with in the expression.
Step 3.1.2
Simplify the result.
Step 3.1.2.1
Divide by .
Step 3.1.2.2
Subtract from .
Step 3.1.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 3.1.2.4
The final answer is .
Step 3.2
Substitute the value into . In this case, the point is .
Step 3.2.1
Replace the variable with in the expression.
Step 3.2.2
Simplify the result.
Step 3.2.2.1
To write as a fraction with a common denominator, multiply by .
Step 3.2.2.2
Combine and .
Step 3.2.2.3
Combine the numerators over the common denominator.
Step 3.2.2.4
Simplify the numerator.
Step 3.2.2.4.1
Multiply by .
Step 3.2.2.4.2
Subtract from .
Step 3.2.2.5
Move the negative in front of the fraction.
Step 3.2.2.6
is approximately which is negative so negate and remove the absolute value
Step 3.2.2.7
The final answer is .
Step 3.3
Substitute the value into . In this case, the point is .
Step 3.3.1
Replace the variable with in the expression.
Step 3.3.2
Simplify the result.
Step 3.3.2.1
Divide by .
Step 3.3.2.2
Subtract from .
Step 3.3.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 3.3.2.4
The final answer is .
Step 3.4
The absolute value can be graphed using the points around the vertex
Step 4