Algebra Examples

Divide Using Long Polynomial Division (x^4-2x^3-11x^2+30x-20) entre (x^2+3x-2)
entre
Step 1
Write the problem as a mathematical expression.
Step 2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+---+-
Step 3
Divide the highest order term in the dividend by the highest order term in divisor .
+---+-
Step 4
Multiply the new quotient term by the divisor.
+---+-
++-
Step 5
The expression needs to be subtracted from the dividend, so change all the signs in
+---+-
--+
Step 6
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+---+-
--+
--
Step 7
Pull the next terms from the original dividend down into the current dividend.
+---+-
--+
--+
Step 8
Divide the highest order term in the dividend by the highest order term in divisor .
-
+---+-
--+
--+
Step 9
Multiply the new quotient term by the divisor.
-
+---+-
--+
--+
--+
Step 10
The expression needs to be subtracted from the dividend, so change all the signs in
-
+---+-
--+
--+
++-
Step 11
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
+---+-
--+
--+
++-
++
Step 12
Pull the next terms from the original dividend down into the current dividend.
-
+---+-
--+
--+
++-
++-
Step 13
Divide the highest order term in the dividend by the highest order term in divisor .
-+
+---+-
--+
--+
++-
++-
Step 14
Multiply the new quotient term by the divisor.
-+
+---+-
--+
--+
++-
++-
++-
Step 15
The expression needs to be subtracted from the dividend, so change all the signs in
-+
+---+-
--+
--+
++-
++-
--+
Step 16
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
+---+-
--+
--+
++-
++-
--+
+-
Step 17
The final answer is the quotient plus the remainder over the divisor.