삼각법 예제

무정의/비연속 구간 찾기 cot(x/3+pi/5)=-tan(3*x-pi/7)
단계 1
방정식의 양변에 를 더합니다.
단계 2
식이 정의되지 않은 지점을 알아내려면 의 진수를 과 같게 설정해야 합니다.
임의의 정수 에 대해
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
방정식의 양변에서 를 뺍니다.
단계 3.2
방정식의 양변에 을 곱합니다.
단계 3.3
방정식의 양변을 간단히 정리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1.1
공약수로 약분합니다.
단계 3.3.1.1.2
수식을 다시 씁니다.
단계 3.3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1
분배 법칙을 적용합니다.
단계 3.3.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.2.1
을 곱합니다.
단계 3.3.2.1.2.2
을 묶습니다.
단계 3.3.2.1.3
마이너스 부호를 분수 앞으로 보냅니다.
단계 4
식이 정의되지 않은 지점을 알아내려면 의 진수를 과 같게 설정해야 합니다.
임의의 정수 에 대해
단계 5
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
을 곱합니다.
단계 5.2
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
방정식의 양변에 를 더합니다.
단계 5.2.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 5.2.3
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 5.2.4
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.4.1
을 곱합니다.
단계 5.2.4.2
을 곱합니다.
단계 5.2.4.3
을 곱합니다.
단계 5.2.4.4
을 곱합니다.
단계 5.2.5
공통분모를 가진 분자끼리 묶습니다.
단계 5.2.6
을 다시 정렬합니다.
단계 5.2.7
에 더합니다.
단계 5.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
의 각 항을 로 나눕니다.
단계 5.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1.1
공약수로 약분합니다.
단계 5.3.2.1.2
로 나눕니다.
단계 5.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.1.1
분자에 분모의 역수를 곱합니다.
단계 5.3.3.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.1.2.1
에서 를 인수분해합니다.
단계 5.3.3.1.2.2
공약수로 약분합니다.
단계 5.3.3.1.2.3
수식을 다시 씁니다.
단계 6
분모가 이거나 제곱근의 인수가 보다 작거나 또는 로그의 진수가 보다 작거나 같은 경우 식이 정의되지 않습니다.
임의의 정수 에 대한
단계 7